
STORK PROJECT

Version 2.0

User Manual v-2.0

Stork Project Team
Center for Computation and Technology

Louisiana State University

November 10, 2010

Contents

1 Introduction to Stork 3
1.1 Welcome to Stork . 3
1.2 Introduction . 3
1.3 Availability . 4
1.4 Privacy Notice . 4
1.5 Contact Information . 4
1.6 Stork Team . 4
1.7 Acknowledgements . 5
1.8 Copy right . 5

2 Building and Installing Stork 6
2.1 Installation from Binary Package 6

2.1.1 Installation . 6
2.1.2 Post-installation . 7

2.2 Installation from Source . 7
2.2.1 Building third party transfer modules 8
2.2.2 Configuring . 9
2.2.3 Building and installing . 10
2.2.4 Post-installation . 11

3 Using Stork 12
3.1 Starting Stork Server . 12
3.2 Stork Client Tools . 13

3.2.1 Stork Submit . 13
3.2.2 Stork Status . 14
3.2.3 Stork Log . 16
3.2.4 Stork Remove . 16
3.2.5 Stork Queue . 17

3.3 Data Transfer using Stork . 19
3.3.1 Sample DAP submit Job File 19

3.4 Stork Directory Structure . 21
3.4.1 bin . 21
3.4.2 etc . 21
3.4.3 libexec . 22

1

3.4.4 sbin . 22
3.4.5 log . 22
3.4.6 tmp . 22

3.5 Protocols Supported by Stork 22
3.6 URLs Supported . 23

3.6.1 Sample Stork Job Requests 24

4 Stork Features 27
4.1 Stork core features . 27

4.1.1 File size verification support 27
4.1.2 Checksum verification support 27
4.1.3 Recursive transfers . 28
4.1.4 Wild card Support . 28
4.1.5 Checkpointing File Transfers 28
4.1.6 Concurrency . 28
4.1.7 Max Retry . 28
4.1.8 Run time . 29
4.1.9 Stat Report . 29
4.1.10 Log . 29
4.1.11 Running Stork in Different Machines 29
4.1.12 Security . 31
4.1.13 Client configuration . 32

4.2 Config Files . 32
4.2.1 Configuration file Macros 32

4.3 STORK LOG Features . 34

5 Estimation and Optimization Service 36
5.1 What is Estimation and Optimization service ? 36
5.2 Using Estimation Service . 37

5.2.1 Different estimation services 37
5.2.2 Sample Estimation service Submission DAP file 37
5.2.3 Results of Estimation Service 38

5.3 Using Optimization Service . 38
5.3.1 DAP sample for Optimization Service 39

6 Questions 41

7 Appendix 42
7.1 Optimization and Estimation results 43
7.2 Stork Supported OS Platforms 43

2

Chapter 1

Introduction to Stork

1.1 Welcome to Stork

Welcome to the Stork version 2.0 user manual. Stork is developed by Stork
project team at the Center for Computation Technology in Louisiana State
University (LSU) and was first developed as a part of Condor team in 2001 by
Dr. Tevfik Kosar. Stork have grown tremendously in these years to become a
stand alone software that is being currently used by many industries, academic
and research institutions all around the globe. Stork is considered one of the
very first examples of data placement and scheduling and optimization tools.
We hope that Stork will help you to provide a better solution in terms of data
bottleneck in your computing environments.

1.2 Introduction

Stork is a batch scheduler specialized in data placement and data movement,
which is based on the concept and idea of making data placement a first class
entity in a distributed computing environment. Stork understands the semantics
and characteristics of data placement tasks and implement techniques specific
to queuing, scheduling, and optimization of these type of tasks.

Stork acts like an I/O control system (IOCS) between the user applica-
tions, the underlying protocols and data storage servers. It provides complete
modularity and extendibility. The users can add support for their favorite stor-
age system, data transport protocol, or middleware very easily. If the transfer
protocol specified in the job description file fails for some reason, Stork can
automatically switch to any alternative protocols available between the same
source and destination hosts and complete the transfer.

Stork can interact with higher level planners and workflow managers. This
allows the users to schedule both CPU resources and storage resources together.
Currently, some implementations of Condor DAGMan and Pegasus come with
Stork support.

3

1.3 Availability

Stork is currently available as a free download for it’s entire user base at URL
http://stork.cct.lsu.edu/downloads/ . Both source code and Binary distribu-
tions of stork version 2.0 are available for the platforms detailed in the appendix
section. A platform is an architecture/operating system combination. Stork bi-
naries are available for most major versions of UNIX and MAC OS. All the
versions and distributions were build and tested in the NMI test bed at UW
madison.

1.4 Privacy Notice

The Stork software will send short messages that includes the domain name,
IP address and OS name to the Stork project team at LSU. This information
collected is to generate reports to publish the use of Stork project world wide.
This information will help the Stork team to improve the quality of software
accordingly.

The Stork team will not use these reports or any information collected from
the usage of stork to publicly identify any stork system or users with out their
permission. No personal information is collected from the users.

Users can also disable this feature if they don’t want to send any information
back to the Stork team by changing the enable stat report to false in stork config
file.

1.5 Contact Information

Latest software releases, news about Stork or any publications that have resulted
in Stork research can be found at the Stork website which is http://www.stork.cct.lsu.edu.

In addition, Stork project maintains two e-mail lists for it’s users. One
is stork-announce@cct.lsu.edu is a low-traffic list and archive used solely for
announcements of software releases and bug fixes. The other one is stork-
discuss@cct.lsu.edu is a list and archive for general questions and discussion
about using and applying Stork.

Users can subscribe to any of these lists by registering at our website. Users
can feel free to subscribe to either, or search the list archives. You must be
subscribed to a list before you can post messages.

1.6 Stork Team

Stork team here at Louisiana State University is headed by Dr. Tevfik Kosar
(kosar@cct.lsu.edu) who holds an joint appointment with department of Com-
puter science and Center for Computation and technology. He is the pri-
mary designer and architect of Stork project. Sivakumar Kulasekaran (sivaku-
mar@cct.lsu.edu) is working for the Stork team as an Information Analyst.

4

Many graduate and undergraduate students are also part of the Stork team.
Some of the team members are Brandon Ross, Sivakarthik Natesan, Esma
Yildirim, Dengpan Yin, Georgi Stoyanov.

1.7 Acknowledgements

Stork team likes to acknowledge National Science Foundation (NSF) for spon-
soring this project under award numbers OCI-0926701. Also, we would like to
thank Center for Computation and Technology at LSU for their facilities, LONI
network for their computational resources.

1.8 Copy right

Stork is Licensed under the Apache License, Version 2.0 .
Copyright (C) 2008-2010, Distributed Systems Laboratory, Center for Com-

putation and Technology, and Department of Computer Science, Louisiana State
University, Baton Rouge, LA. Licensed under the Apache License, Version 2.0
(the ”License”); you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-
2.0

Unless required by applicable law or agreed to in writing, software dis-
tributed under the License is distributed on an ”AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations
under the License.

5

Chapter 2

Building and Installing
Stork

2.1 Installation from Binary Package

Stork can be downloaded from the Stork project homepage by clicking down-
loads then followed by clicking Stork Binary compilation release. After down-
loading, simply extract the package with whatever tools you have at your dis-
posal for decompressing and untarring gzipped tar archives. Most users would
simply use the tar command. For example, to extract the Stork 2.0 binaries:

$ tar zxvf stork-2.0.tar.gz

This will create a directory in your current directory containing the binaries.

Afterwards, simply cd into the directory.

2.1.1 Installation

For installing Stork from binary compilation, you simply have to run the in-

cluded installation script with the desired installation path <install-path> as

an argument: ./stork-install.ksh <install-path>

This will extract the included binaries and place them in the location spec-

ified by <install-path> .

6

http://www.cct.stork.lsu.edu/

2.1.2 Post-installation

Now that you have installed Stork, you must configure your environment in

order to use Stork with minimal effort. After your installation process of

Stork completes, you will be shown a message asking you to set your PATH and

STORK_CONFIG environment variables by running commands similar to these:

$ export STORK_CONFIG=/path/to/stork /etc/stork_config

$ export PATH=$PATH:/path/to/stork /bin:/path/to/stork /sbin

You should do as the script says! In order to make sure that your environ-

ment is configured properly every time you start a new shell, you should also

add these commands to a start-up script (e.g., the .bashrc file in your home

directory). This will prevent you from needing to run these commands every

time you want to use Stork.

If you have reached this point without a problem, you now have a working

Stork installation. :) You may test this by starting a Stork server with the

command stork_server. If you would like to edit the stork_config file and

configure your Stork installation further, it may be found in the etc directory

inside the newly installed Stork directory.

2.2 Installation from Source

This section is for users who wants to build Stork from the source code and for

users who needs to customize their external third party transfer modules with

their installation. Users who have compiled Stork using binary package may

skip this section.Stork may be downloaded from the Stork project homepage by

clicking downloads then followed by clicking Stork source code release.

If you are a user of a UNIX-like system, it is recommended that you download

the source code, as this will allow you to better customize your installation. If

7

http://www.cct.stork.lsu.edu/

you are running on a system on which Stork is not known to compile, or you

find you are not able to compile from source for other reasons, you may want

to see if a binary package is available for your system. This information can be

obtained by viewing Stork supported platforms.

After downloading, simply extract the package with whatever tools you have

at your disposal for decompressing and untarring gzipped tar archives. Most

users would simply use the tar command. For example, to extract the Stork 2.0

source:

$ tar xvf stork-2.0.tar.gz

This will create a directory in your current directory containing the source

code. Afterwards, simply cd into the directory.

2.2.1 Building third party transfer modules

If you plan on building contributed (third-party) transfer modules for Stork

which is optional for the users who just need the core Stork functionalities, you

will have to download the externals package from the Stork website, and place

its contents into the ./externals/bundles/ directory. If you have no such

plans, you may skip this step completely.

The externals package, at this point, contains the following bundles: globus,

irods, openssl, SRB and SRM. The following table shows the protocols with

available transfer modules and the bundles required to compile them:

8

Protocol Bundles

FTP globus, openssl

GSIFTP globus, openssl

HTTP globus, openssl

iRODS irods, srb

SRB srb

SRM srm

Petashare irods, srb

Please note that Stork uses Globus components for file transfers using the

GSIFTP protocol (GridFTP). Therefore, you need to have the Globus Toolkit

installed and configured on your system with user/host certificates in order to

use this transfer module.

2.2.2 Configuring

After downloading and extracting the source, you must configure the source

tree with the configure script therein. Note, however, that if you are trying

to build a development version of Stork (odd minor version numbers), then you

will need to have autoconf and autoheader (at least version 2.59) installed

in order to first generate the configure script. This is unnecessary if you are

trying to build a release, as releases already contain a configure script.

To build the Stork client commands, the server, and the core (supported)

transfer modules, and install to the default /usr/local/stork directory, simply

run ./configure with no options. However, if you want to build contributed

(third-party) transfer modules, want to build Stork with other features, or need

to specify a special compiler or library to use, you must use additional op-

tions with ./configure. (A complete list of options may be seen by running

./configure --help.)

9

http://www.globus.org/toolkit/

You will probably want to specify a location other than the default location

(/usr/local/stork) to install Stork. If you are not a superuser, this is a

necessity. This can be done by specifying --prefix=path with ./configure,

where path is the directory in which you want to install Stork.

You might also want to build contributed transfer modules along with Stork.

This can be done by specifying --with-bundle with ./configure, where bundle

is the name of the external package necessary to build the transfer module in

question. If you specify all of the necessary bundles for a given transfer module

(as specified in the table in the Externals section) with --with-bundle , and

the bundles can all be found in the ./externals/bundles/ directory, then the

transfer module in question will be built. More information about this can be

found in the Externals section above and by running ./configure --help.

For example, to build all transfer modules configure file looks as follows

./configure –prefix=path (where you want to install) –with-openssl –with-

globus –with-srb –with-srm –with-irods –with-petashare

configure will take a few minutes to check that everything necessary for

building Stork is available on your system. After it is done running, you are

ready to move on to the next step.

2.2.3 Building and installing

If you have been building from source up to this point, all you have to do now

is run make install or make . This will install everything to the location

specified with --prefix when you ran ./configure, or to /usr/local/stork

if you did not specify anything. After it has installed (it shouldn’t take long),

you may go to the next step.

Depending on the speed of your system and the number of externals you

require, building may take anywhere from 3 to 20 minutes. Just be patient.

10

Note that while external modules are building, output will stop for a significant

amount of time. Keep in mind that this is normal, and don’t worry that your

screen may have frozen. If you are interested in watching the output from those

external builds for some reason, you may do so by running (in another terminal,

of course) tail -f with the path to the build log shown before the module

begins building given as an argument.

2.2.4 Post-installation

Now that you have installed Stork, you must configure your environment in

order to use Stork with minimal effort. After your build process of Stork from

source completes, you will be shown a message asking you to set your PATH and

STORK_CONFIG environment variables by running commands similar to these:

$ export STORK_CONFIG=/path/to/stork /etc/stork_config

$ export PATH=$PATH:/path/to/stork /bin:/path/to/stork /sbin

You should do as the script says! In order to make sure that your environ-

ment is configured properly every time you start a new shell, you should also

add these commands to a start-up script (e.g., the .bashrc file in your home

directory). This will prevent you from needing to run these commands every

time you want to use Stork.

If you have reached this point without a problem, you now have a working

Stork installation. :) You may test this by starting a Stork server with the

command stork_server. If you would like to edit the stork_config file and

configure your Stork installation further, it may be found in the etc directory

inside the newly installed Stork directory.

11

Chapter 3

Using Stork

3.1 Starting Stork Server

The Stork server is the main component of the Stork scheduler. The Stork server

runs as a persistent daemon process and performs management, scheduling,

execution, and monitoring of data placement activities.

The Stork server accepts the following parameters (defined by STORK_ARGS)

$ sbin/stork_server --help

==

USAGE: stork_server

[-t] // output to stdin

[-p] // port on which to run Stork Server

[-help] // stork help screen

[-Config] // stork config file

[-Serverlog] // stork Server log in ClassAds

[-Xmllog] // stork user log in XML format

==

If a user called stork exists, the server will switch to the stork user for

security purposes.

The command below starts the Stork server connected to port <port> The

stork logs are named with the prefix Stork, such as StorkLog, Stork.history, etc.

12

stork_server -p <port>

The Stork server generates a log file which is used for logging its activities.

Below is a sample of the log file:

cat local/log/StorkLog
11/3 15:04:54 **
11/3 15:04:54 ** stork_server (STORK) STARTING UP
11/3 15:04:54 ** /home/sivahpc/storkie/stork-2.0/stork/stork/sbin/stork_server
11/3 15:04:54 ** SubsystemInfo: name=STORK type=DAEMON(10) class=DAEMON(1)
11/3 15:04:54 ** Configuration: subsystem:STORK local:<NONE> class:DAEMON
11/3 15:04:54 ** $StorkVersion: 1.2.0 Nov 3 2010 $
11/3 15:04:54 ** $StorkPlatform: X86_64-LINUX_FC6 $
11/3 15:04:54 ** PID = 1167
11/3 15:04:54 ** Log last touched 11/3 15:02:41
11/3 15:04:54 **
11/3 15:04:54 Using config source: /home/sivahpc/storkie/stork-1.3.0/stork/stork/etc/stork_config
11/3 15:04:54 DaemonCore: Command Socket at <130.39.225.155:40411>
11/3 15:04:54 Warning: Collector information was not found in the configuration file. ClassAds will not be sent to the collector and this daemon will not join a larger Condor pool.
11/3 15:04:54 DaP log file: XML log file: %s

11/3 15:04:54 Submitting anonymous usage report to stork.cct.lsu.edu
11/3 15:04:54 MAX_NUM_JOBS = 10
11/3 15:04:54 MAX_RETRY = 10
11/3 15:04:54 MAXDELAY_INMINUTES = 10
11/3 15:04:54 VERIFY_CHECKSUM = FALSE
11/3 15:04:54 VERIFY_FILESIZE = FALSE
11/3 15:04:54 CHECKPOINT_TRANSFER = FALSE
11/3 15:04:54 SET_PARALLELISM = 1
11/3 15:04:54 MODULE_DIR = /home/stork//libexec
11/3 15:04:54 TMP_DIR = /home/stork//tmp
11/3 15:04:54 modules will execute in /home/stork//tmp
11/3 15:04:54 TMP_CRED_DIR = /home/stork//tmp
11/3 15:04:54 LOG = /home/stork//log
.....................

3.2 Stork Client Tools

3.2.1 Stork Submit

stork_submit is a client-side tool used to submit stork jobs to the Stork server.

$ bin/stork_submit

Usage: stork_submit [option]... [stork_server[:port]] submit_file

stork_server[:port]

specify Stork server host/port (deprecated)

submit_file path to Stork submit file

Options:

-l <note> include note in userlog (used by DAGMan)

-stdin read submission from stdin instead of a file

-help print this help information

13

-version print version information

-debug print debugging information to console

-name <host[:port]>

specify Stork server host/port

You can submit job to stork server using stork submit as follows. In this

example, dapfile.dap is the dap file that is submitted to the server.

[sivahpc@dsl-condor bin]$./stork_submit dapfile.dap

Stork server will display the following output to conform your submission

using default proxy: /tmp/x509up_u24489

================

Sending request:

[

dest_url = "gsiftp://oliver1.loni.org/work/siva/dsanju";

arguments = "-s 200M";

src_url = "gsiftp://eric1.loni.org/work/siva/18GB";

err = "new.err";

output = "new.out";

dap_type = "transfer";

x509proxy = "/tmp/x509up_u24489"

]

================

Request assigned id: 16

3.2.2 Stork Status

stork_status is a client side tool used to query regarding the status of jobs
submitted to the Stork server.

$ bin/stork_status

Usage: stork_status [option]... [stork_server[:port]] job_id

stork_server[:port]

specify Stork server host/port (deprecated)

job_id id of the job whose status you want

Options:

-help print this help information

-version print version information

-debug print debugging information to console

-name <host[:port]>

specify Stork server host/port

14

The dap_id is used by the stork_status commmand to query the Stork server.
The dap_id is generated and assigned to a job when it is submitted to Stork
using the stork_submit command.

The stork_status command accepts the following parameters, where host_name
is optional. The host_name is used to specify a Stork server on a remote host.

Stork submit will produce two different outputs depending upon when it is
called. If it is called before the process completes, sample output is shown below

[sivahpc@dsl-condor bin]$./stork_status 15

===============

status history:

===============

[

execute_host = "<130.39.225.155:48883>";

dest_url = "gsiftp://oliver1.loni.org/work/siva/dsanju";

arguments = "-s 200M";

src_url = "gsiftp://eric1.loni.org/work/siva/18GB";

remote_user = "sivahpc@dsl-condor.csc.lsu.edu";

status = "request_received";

err = "new.err";

pid = -1;

dap_id = 15;

output = "new.out";

dap_type = "transfer";

owner = "sivahpc";

submit_host = "<130.39.225.155:34796>";

x509proxy = "/tmp/cred-15";

timestamp = absTime("2010-09-21T16:03:13-0500");

use_protocol = 0

]

If the job is completed by the stork server, then the status for the particular
job will be as shown below

15

[sivahpc@dsl-condor bin]$ stork_status 10

===============

status history:

===============

[

status = "request_completed";

dap_id = 10;

timestamp = absTime("2010-09-21T12:11:43-0500")

]

===============

3.2.3 Stork Log

stork_log is a client side tool used to bring the user log from the stork server
to the client’s location.

The stork_log command accepts the following parameters, where host_name
is optional. The host_name is used to specify a Stork server on a remote host.

./stork_log [-h|--help] [-p pid] <command> [args] ...

A tool to transfer log files for Stork jobs from a Stork server to the

local machine.

Options:

-h, --help Print this usage information and exit

-p <pid> Specify the pid of the stork_log daemon to issue commands to

Valid commands and associated parameters are:

get <host[:port]> <dap_id> <file_path>

Retrieve a userlog for job with given dap_id from the Stork server at

host[:port], and place it at file_path.

3.2.4 Stork Remove

stork_rm is a client side tool used to delete any jobs that are currently queued

with the Stork server.

16

./stork_rm -h

usage: stork_rm [option]... [stork_server] job_id

stork_server specify explicit stork server (deprecated)

job_id stork job id

-help print this help information

-version print version information

-debug print debugging information to console

-name stork_server stork server

Stork remove can be called as follows. Here 16 is the job id

[sivahpc@dsl-condor bin]$./stork_rm 16

Stork job 16 has been removed from the queue.

You can check the status of this job by calling stork status. The output will

be then

[sivahpc@dsl-condor bin]$./stork_status 16

===============

status history:

===============

[

status = "request_removed";

dap_id = 16;

error_code = "REMOVED!";

timestamp = absTime("2010-09-21T16:09:53-0500")

]

3.2.5 Stork Queue

stork_q is a client side tool used to retrieve a listing of jobs that are currently

queued with the Stork server.

./stork_q -h

Usage: stork_q [option]... [stork_server[:port]]

stork_server[:port]

specify Stork server host/port (deprecated)

Options:

17

-help print this help information

-version print version information

-debug print debugging information to console

-name <host[:port]>

specify Stork server host/port

Sample output from the stork_q command:

[

dest_url = "file:/home/user1/stork/data10M_48";

src_url = "file:/home/user1/stork/data10M";

remote_user = "user1@dsl-turtle06.cct.lsu.edu";

status = "request_rescheduled";

dap_id = 264;

use_protocol = 0;

stork_server = "qb1.loni.org";

dap_type = "transfer";

error_code = "port not accessible";

num_attempts = 1;

owner = "user1";

cluster_id = 264;

timestamp = absTime("2008-05-28T14:52:22-0500");

generic_event = "Rescheduling."

]

Stork server runs as a persistent daemon process. It constantly listens to

requests from the clients. The clients send their requests to the Stork server

over the network using stork_submit command line tool in form of a ClassAd

(Classified Advertisement).

Since Stork is designed to work in a heterogeneous computing environment,

one of its goals is to support as many storage systems and file transfer protocols

as possible.

Another important characteristic of Stork is reliability. It makes sure that

the requested transfers are completed successfully even in case of server or net-

work failures.

Stork source and destination URLs have a naming convention. All URLs

ending with a slash (/) are assumed to be directories and the rest are assumed

18

to be files.

3.3 Data Transfer using Stork

3.3.1 Sample DAP submit Job File

Stork submits a submit description file which contains specification about the

job to be submitted by the user. Commands that are available as part of the

job description file are the following

1. dap type = < servicetype > - Specify what kind of service you need from

Stork. Users can specify estimation or transfer depending upon their needs

2. src url = < pathname > Address of the source file that needs to be

transferred by Stork. In case of estimation, users can provide host name if

they need service for memory to memory data transfer between two hosts

or full address path to a file if they need disk to disk estimation service

3. dest url = < pathname > - Address of the destination where the files

need to be transferred

4. arguments = < argumentlist > - List of arguments that needs to be

provided to the stork server for data transfer. This is completely optional.

For example, to use optimization service with history , user can provide

-h

5. output = < outputfilename > - User who wish to see what is happening

with this job can opt for this output file. Either file name or full path

address of a file where users need to store their output file can be specified.

Also, this can be used to capture error the program would normally write

to the screen

19

6. error= < errorfilename > - File used by stork to capture any error

messages the program would write to the screen. Generally, program will

show success or error depending on the transfer results.

7. x509proxy= < pathname > - Used to override the default path name for

X.509 user certificates. The default location for X.509 proxies is the /tmp

directory, which is generally a local file system. Stork will use the proxy

specified in the submit description file . Users can also specify default

instead of path name.

8. checkpoint transfer = < Booleanvalue > - To have checkpointing feature

enabled in Stork. If you enable here, it will override the default value in

the config file

9. verify checksum= < booleanvalue > - Enables the checksum comparison

of the files. If you enable here, it will override the default value in the

config file

10. verify filesize=< booleanvalue > When switched on, Stork determines the

file size of the files at the source and the destination and compares them.

11. file ckpt=< booleanvalue > Enable single file checkpointing.If you enable

here, it will override the default value in the config file

12. disk transfer = < Booleanvalue > When mentioned in dap file while using

estimation service, it will enable disk to disk estimation service

Following is a sample DAP file parameters that are possible . Users can add
or modify this according to the transfer module they are using. Some dap files
used for specific purposes are inside the sample dapfile folder of your installation.
In case, if you install by source code, dap file folder is located in the directory
where stork code resides.

[

dap_type="transfer or estimation";

20

dest_url ="gsiftp://oliver1.loni.org/work/siva/test";

src_url="gsiftp://eric1.loni.org/work/siva/18GB";

arguments = "-s 200M";

x509proxy ="default";

output ="new.out";

err ="new.err";

checkpoint_transfer = true;

verify_filesize = true;

file_ckpt = true

disk_transfer = "yes"

]

3.4 Stork Directory Structure

Stork has the following directory structure in its installation folder. They are

• bin

• etc

• log

• libexec

• sbin

• tmp

3.4.1 bin

The bin directory consists of all Stork client tools. Following are the components
inside bin directory

[sivahpc@dsl-condor bin]$ ls

stork_log stork_q stork_rm stork_status stork_submit

3.4.2 etc

etc folder consist of stork configuration files . The etc will have entries as shown
below

21

[sivahpc@dsl-condor etc]$ ls

stork_config

Users can customize the running of stork server by editing the stork config
file.

3.4.3 libexec

The libexec directory consists of all the transfer modules that you have build
while installing stork.

stork.transfer.file-gsiftp stork.transfer.file-petashare stork.transfer.srm-file

stork.transfer.file-file stork.transfer.file-http stork.transfer.file-srb

stork.transfer.file-ftp stork.transfer.file-irods stork.transfer.file-srm

3.4.4 sbin

This directory consist stork server.

3.4.5 log

Stork server logs and history logs are located in this folder. History log will
have the logs of all completed jobs. Typical entries are

storklog.log storkserver.log storkserver.log.history

3.4.6 tmp

Location in which transfer modules are executed.

3.5 Protocols Supported by Stork

Currently the following protocols and storage systems are supported by Stork:

• file

• FTP

• GridFTP

• HTTP

• iRODS

• PetaShare

• SRB

22

• SRM

The protocol to be used is determined by the Stork server according to the

URL signatures of the files to be transferred.

3.6 URLs Supported

URLs supported: The format of the URL for various supported protocols are

as below:

• file URL - file:/path/to/file

• FTP URL - ftp://user:password@host:port/path/to/file

• HTTP URL - http://user:password@host:port/path/to/file

• GridFTP URL - gsiftp://user:password@host:port/path/to/file

• SRB URL - srb://user[.mdasDomain[.zone]]:password@host:port/path/to/file

• iRODS URL - irods://user.zone:password@host:port/path/to/file

• PetaShare - petashare://path/to/file

Assuming that a service (SRB, iRODS, GridFTP, etc) is running at host on

port. Please note that in the URLs shown above the parameters denote:

• user - the username

• password - password corresponding to the username

• host - the host on which the service is running

• port - the port the service listens on

• /path/to/file - path to the location of the file you would like to transfer

• /path/to/directory/ - path to the directory you would like to perform
transfers

23

3.6.1 Sample Stork Job Requests

Sample Stork Job Requests

i) file to file transfer

[

dap_type = "transfer";

src_url = "file:/path/to/file";

dest_url = "file:/path/to/file";

]

irods to file

[

dap_type = "transfer";

src_url = "irods://user.zone:password@host:port/path/to/file";

dest_url = "file:/path/to/file";

]

ii) file selection using wild cards

[

dap_type = "transfer";

src_url = "file:/path/to/file*";

dest_url = "irods://user.zone:password@host:port/path/to/directory/";

]

[

dap_type = "transfer";

src_url = "file:/path/to/*file";

dest_url = "irods://user.zone:password@host:port/path/to/directory/";

]

[

dap_type = "transfer";

src_url = "file:/path/to/fi*le";

dest_url = "irods://user.zone:password@host:port/path/to/directory/";

]

[

dap_type = "transfer";

src_url = "file:/path/to/*";

dest_url = "irods://user.zone:password@host:port/path/to/directory/";

24

]

[

dap_type = "transfer";

src_url = "irods://user.zone:password@host:port/path/to/file*";

dest_url = "file:/path/to/directory/";

]

[

dap_type = "transfer";

src_url = "irods://user.zone:password@host:port/path/to/*file";

dest_url = "file:/path/to/directory/";

]

[

dap_type = "transfer";

src_url = "irods://user.zone:password@host:port/path/to/fi*le";

dest_url = "file:/path/to/directory/";

]

[

dap_type = "transfer";

src_url = "irods://user.zone:password@host:port/path/to/*";

dest_url = "file:/path/to/directory/";

]

iii) recursive transfer from local directory to SRB collection

[

dap_type = "transfer";

src_url = "file:/path/to/directory/";

dest_url = "irods://user.zone:password@host:port/path/to/directory/";

]

[

dap_type = "transfer";

src_url = "irods://user.zone:password@host:port/path/to/directory/";

dest_url = "file:/path/to/directory/";

]

Any of the supported protocols may be invoked by simply replacing the

URLs shown above by those of the protocols required. The new URLs should

however conform to their URL format as described in the supported URL format

25

section above.

26

Chapter 4

Stork Features

4.1 Stork core features

4.1.1 File size verification support

Currently all the transfer modules supported by Stork support file size verifi-

cation. File size verification can either be turned on or off by specifying the

corresponding option in the Stork configuration file.

When switched on, Stork determines the file sizes of the files at the source

and the files at the destination and compares them. If the file sizes differ, an

error message is logged to the Stork log file.

4.1.2 Checksum verification support

Currently all the transfer modules supported by Stork support checksum veri-

fication. Checksum verification can either be turned on or off by specifying the

corresponding option in the Stork configuration file.

When switched on, Stork computes the checksums of the files at the source

and the files at the destination and compares them. If the checksums differ, an

27

error message is logged to the Stork log file.

4.1.3 Recursive transfers

Currently all the transfer modules supported by Stork support recursive direc-

tory transfers. Recursive directory transfers are specified in the URL by ending

the URLs with a ’/’ to represent a directory.

4.1.4 Wild card Support

Currently all the transfer modules supported by Stork support transferring files

with a wild cards such as *.txt, stork*, *stork or st*rk.

4.1.5 Checkpointing File Transfers

Currently the Petashare and GridFTP transfer modules supported by Stork sup-

port checkpointing of transfers and provide the capability of resuming transfers

in the event of an error.

These Stork modules checkpoint the transfers during various stages and thus

enable Stork to resume the transfer at the last checkpoint in the event of a

network outage or crash.

4.1.6 Concurrency

Stork can handle the concurrency in the data placement jobs. Users have the

option to limit the value of this concurrency. Default value is 10. Users can edit

this value to their requirement in the config file.

4.1.7 Max Retry

This value represents the number of attempts stork will attempt to transfer

using regular and alternative protocols. Once the number of attempts exceeds

28

this value, stork will return failure for the corresponding data transfer jobs.

Default value is 10. Users can edit this value in the config file.

4.1.8 Run time

This feature allows the user to limit the run time for a data placement job,

after which the placement is considered failure. Units are measured in minutes.

Default value is 10 and minimum value should be 1. User can edit these value

in the config file.

4.1.9 Stat Report

Stork submits anonymous usage statistics to the stork developers. This report

contains only the version string and platform stork was built for. Default is set

to true. User who does not want this feature can turn off by setting it to false

in the config file.

4.1.10 Log

Stork produces both user log and server log. User log will be defined in the

name storklog.log and server log will be of the name storkserver.log. Only user

log will be used for any parsing of the results. Server log is meant for stork

server and not for normal reading purposes.

4.1.11 Running Stork in Different Machines

Stork provides the flexibility of running stork- server in one location and stork -

client in another location. This feature will be useful for many situations where a

server can’t run for extended period of time due to server access time limitations

Consider the following example. In this case, we are going to run stork_server

in dsl− condor machine and stork client in another machine called dsl-stork.

29

stork server is located in your sbin directory of the stork installation and clients

are located in bin directory.

Step 1: Start stork server in dsl − condor by running the following com-

mand

stork_server -p port number (Port number is the one you are going to

open for the connection)

For example, { stork_server -p 9621}

Step 3: Submit your jobs to the stork server from the client machine

{stork_submit -name storkserveraddress : port number dapfile}

For example, {stork_submit -name dsl-condor.lsu.edu:9621 test.dap }

Stork then returns the associated job id, which is used by other Stork job control

tools.

Step 4: You can do the regular stork client operation such as {stork_status, stork_q, stork_rm }

in client’s machine the same way as you did for storksubmit

Step 5: You can look for server log entries in server side. Also, user logs

will be downloaded to client side once you have submitted the job

Stork fully supports GridFTP transfers, with the gsiftp:// protocol. To use

GridFTP with Stork, users must have a valid proxy. Specify the path or say

default to the created proxy using the x509proxy keyword in the Stork submit

file. Placing the special value x509proxy = ” default”; or x509proxy = ”

/tmp/x509up-uxxxx ”

Also, for GSIFTP transfers, you need to have client grid proxy initiated and

30

server grid proxy initiated. Stork will use the users credentials to authenticate

to the GridFTP server.

For example,

[

dap_type = "transfer";

src_url = "gsiftp://$src.loni.org/home/sivahpc/test/$srcfile";

dest_url = "gsiftp://$dest.dsl-stork.org/home/sivahpc/test/dest-$destfile";

x509proxy = "default";

]

4.1.12 Security

Security in Stork is a quiet important issue with many aspects to consider. A
Stork server allows different client machines to connect to it . It is important
to limit the access to this server.

Stork provides authentication by default using GSI. If no security level is
needed, users can by pass the security. However, it is strongly recommended
not to bypass authentication other than testing purposes .

Proper identification of a user is accomplished by the process of authenti-
cation. It is used to determine real users and malicious ones. However, many
authentication mechanisms are available like Kerberos, SSL, GSI. Stork in this
release supports only GSI authentication. Certificate is used to establish a
trusted communication between two parties. Users needs to have their own
grid credentials installed in both server and client side. They can also use their
already existing grid certificates provided by various grid computing platforms
such as LONI etc..

More information about the GSI (Grid Security Infrastructure) protocol
which provides an avenue for Stork to do PKI-based (Public Key Infrastruc-
ture) authentication using X.509 certificates can be found in globus website.
http://www.globus.org/.

Security configuration

As Stork supports only GSI authentication, it is recommended to have grid-
proxies initiated at both client and server side. Stork will look for it by default.
If you don’t have GSI credentials, you can bypass it by following the steps below.

Anonymous authentication causes authentication to be skipped entirely. As
such, it does not use authentication mechanisms, it is strongly encouraged to
use for testing purposes . Users can follow the following configurations when
chose to skip authentication only.

31

4.1.13 Client configuration

The client side needs to be configured in order to establish the authentication
with the server. Users can add the following information in their config file.

SEC_DEFAULT_AUTHENTICATION =ANONYMOUS

SEC_CLIENT_AUTHENTICATION=ANONYMOUS

Server side configuration

Server side needs to be configured with the following macros in order to ac-
cept the authentication from client side. A list of acceptable methods may be
provided by the daemon, using the macros

SEC_DEFAULT_AUTHENTICATION_METHODS

SEC_READ_AUTHENTICATION_METHODS

SEC_WRITE_AUTHENTICATION_METHODS

SEC_ADMINISTRATOR_AUTHENTICATION_METHODS

SEC_CONFIG_AUTHENTICATION_METHODS

SEC_OWNER_AUTHENTICATION_METHODS

SEC_DAEMON_AUTHENTICATION_METHODS

SEC_NEGOTIATOR_AUTHENTICATION_METHODS

SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS

SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS

SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS

For example, a server side may be configured (in config files) with:

SEC_DEFAULT_AUTHENTICATION_METHODS =ANONYMOUS

4.2 Config Files

The Stork configuration file is used to customize how Stork operates after in-
stallation. Most of the Stork installation have a basic configuration file. Any
changes made to this configuration file will affect the way how Stork operates
regularly.

4.2.1 Configuration file Macros

Macros definition are of the form

<macro_name> = <macro_definition>

There must be white space between the macro name, the “=” sign, and the
macro definition.

Some of the Stork configuration Macros are

32

• RELEASEDIR = < pathname > This is a variable used by config file to
simplify writing the path name. Default is /usr/local/stork but users can
change it to their installation directory path

• PORT = < portnumber >Start Stork on a well-known port. Uncomment
to simplify connecting to a remote Stork.

• HOST = < ipaddressandportnumber > Stork host may specify an op-
tional default remote Stork server and port.

• ADDRESSFILE = < pathname > When Stork starts up, it can place its
address (IP and port) into a file. This way, tools running on the local
machine don’t need an additional ”-n host:port” command line option

• LOGBASE = < pathname > stork log base specifies the base name for
heritage Stork log files

• MAXSTORKLOG = < value > Maximum number of entires in each log
file

• MAXNUMJOBS = < value > Limits the number of concurrent data
placements handled by Stork.

• MAXRETRY = < value > Limits the number of retries for a failed data
placement.

• MAXDELAYINMINUTES=< value > Limits the run time for a data
placement job, after which the placement is considered failed.

• MODULEDIR =< pathname > Directory containing Stork transfer mod-
ules.

• ENABLESTATREPORT = < booleanvalue > Enable or disable report-
ing of anonymous usage statistics to the Stork developers.

• RECURSIVECOPY = < booleanvalue > Enable or disable the recursive
directory transfers

• VERIFYCHECKSUM = < booleanvalue > Enable or disable checksum
verification support

• VERIFYFILESIZE = < booleanvalue > Enable or disable filesize verifi-
cation support

• CHECKPOINTTRANSFER = < booleanvalue > Enable or disable check-
pointing of file transfers

33

4.3 STORK LOG Features

stork_log is a client side tool used to retrieve a job’s userlog in realtime from
a remote Stork server. It can also be used to retrieve a job’s userlog after the
job has completed. stork_log is typically not invoked manually by the user,
but is instead called by stork_submit upon submission of a job whose userlog
has been requested by a ”log” entry in the job submission file.

stork_log, upon invocation, will check for the presense of a stork_log

daemon, and will spawn one if one is not detected. It will then send a request
to the daemon to connect to the specified Stork server and transfer the userlog.
This design decision allows for multiple userlog transfers to be handled by a
single process.

The stork_log command accepts the parameters as detailed in the usage
information below. host_name is optional and is used to specify a Stork server
on a remote host. If not given, the default Stork server is assumed.

Below is the output of stork_log --help.

./stork_log [-h|--help] [-p pid] <command> [args] ...

A tool to transfer log files for Stork jobs from a Stork server to the

local machine.

Options:

-h, --help Print this usage information and exit

-p <pid> Specify the pid of the stork_log daemon to issue commands to

Valid commands and associated parameters are:

get <host[:port]> <dap_id> <file_path>

Retrieve a userlog for job with given dap_id from the Stork server at

host[:port], and place it at file_path.

A tool to transfer log files for Stork jobs from a Stork server to the local
machine. In cases, where Stork client and server is running in two different lo-
cations, stork log command can help bringing the user log to the client location.
It can bring the user log per job id or users can request for the entire user log.
This user log can be used for various purposes . Some output that is written on
user log is shown below

1 000 (004.-01.000) 09/13 09:42:36 Job submitted from host: <130.39.225.155:57063>

2 ...

3 001 (004.-01.000) 09/13 09:42:45 Job executing on host: <130.39.225.155:54498>

4 ...

34

5 005 (004.-01.000) 09/13 09:42:45 Normal termination (return value 0)

6 ...

7 000 (005.-01.000) 09/13 09:48:31 Job submitted from host: <130.39.225.155:36080>

8 ...

9 001 (005.-01.000) 09/13 09:48:33 Job executing on host: <130.39.225.155:42576>

10 ...

11 005 (005.-01.000) 09/13 09:48:33 Normal termination (return value 0)

35

Chapter 5

Estimation and
Optimization Service

Stork release 2.0 have the estimation and optimization service features. Stork
2.0 can provide the user with the optimal parallel stream number and a provision
for the estimated time and throughput information for a specific data transfer.

5.1 What is Estimation and Optimization ser-
vice ?

In a widely distributed many-task computing environment, data communica-
tion between participating cluster becomes a major performance bottleneck.
Majority of the users fail to obtain even a fraction of the theoretical speeds
promised by these networks due to issues such as sub-optimal TCP tuning, disk
performance and etc. To improve the performance of the data transfer and to
overcome the poor network utilization of the TCP protocol, many users uses
opening up many parallel TCP streams and is highly used in many application
areas.

Even these streams can enable to achieve higher throughput, opening up
too many streams can cause network congestion in low-bandwidth networks
and in high speed networks, it is very difficult to predict optimal parallelism
level. Stork can help users in predicting optimal parallel stream number by
using novel mathematical models we have developed for this purpose . A user
using this service just only needs source and destination address and size of the
data transfer. To the best of our knowledge, none of the existing models and
tools can give as accurate results as ours with a comparable prediction overhead
and we believe that Stork is unique in terms of the result it produces.

Stork can make use of this optimal parallel streams that have been predicted
using estimation service for improving the throughput of the scheduled data
transfers.

36

More information on estimation and optimization can be found in these two
IEEE journal publications 1, 2

5.2 Using Estimation Service

For users who need a first hand estimation of optimal number of parallel streams
along with estimated throughput and total time for the data transfer can make
use of estimation service. Stork at this time support only GridFTP protocol for
its estimation and optimization service. User just needs to provide source and
destination address and file size. The estimation service can make prediction by
performing sampling between two sites specified in the DAP file. Based on the
sampling results, Stork will do some mathematical analysis based on our model
and returns result back to the user.

5.2.1 Different estimation services

Stork currently supports two types of estimation services, namely memory to
memory estimation service and disk to disk data transfer estimation services.
Users can just choose to follow one of the dap type depending on what type of
service they require.

5.2.2 Sample Estimation service Submission DAP file

Following is an example of DAP file that can be used for the estimation service
for memory to memory transfers

[

dap_type = "Estimation";

src_url = "gsiftp://$src.loni.org/";

dest_url = "gsiftp://$dest.dsl-stork.org/";

x509proxy = "default";

filesize = "2GB";

]

Following is an example of DAP file that can be used for the estimation
service for Disk to Disk transfers

[

dap_type = "Estimation";

1A Data Throughput Prediction and Optimization Service for Widely Distributed Many-
Task Computing Dengpan Yin, Esma Yildirim, Sivakumar Kulasekaran, Brandon Ross and
Tevfik Kosar To appear in IEEE Transactions on Parallel and Distributed Systems-Special
Issue on Many-Task Computing (TPDS-SI),2011.

2Prediction of Optimal Parallelism Level in Wide Area Data Transfers Esma Yildirim,
Dengpan Yin and Tevfik Kosar , IEEE Transactions on Parallel and Distributed Sys-
tems(TPDS),2010

37

src_url = "gsiftp://poseidon1.loni.org/work/siva/siva";

dest_url = "gsiftp://eric.loni.org/work/siva/1gb";

disk_transfer ="yes";

x509proxy = "default";

arguments = "-s 50M"

]

In the first case, file size is necessary. If not provided, stork will use 1gb as
default file size. For the second case, sampling size is necessary. If not stork
will use 5 percent of the file size as sampling size.

Users can submit this DAP file to Stork server just like regular stork transfer
job by invoking Stork submit command like stork submit DAPFILE NAME

5.2.3 Results of Estimation Service

Stork estimation service can write the results to an output file if asked in DAP
file or users can just view it by using stork status command. The following is the
example output of the estimation service. Stork by default writes this output to
its serverlog.history file. Users can view this result just by typing stork status
DAPID

===============

status history:

===============

[

file_size_in bytes = 756;

optimization_cost = 2.100000000000000E+01;

max_throughput = 3.521927022370290E+01;

status = "request_completed";

dap_id = 17;

est_time = "0 hours, 3 mins, 1 secs";

optimal_streams = 1;

timestamp = absTime("2010-09-22T11:09:15-0500")

]

5.3 Using Optimization Service

Optimization service in Stork provides the same functionality as like estima-
tion service but it actually uses the estimation results to do the actual data
transfer. User submit a regular data transfer job and if optimization is specified

38

as YES, Stork will perform the estimation service first followed by the actual
data transfer using the estimation results. An another important field added to
CLASSADs is use history option. This option enforces optimization service to
check from the database which keeps the history of optimized parameters from
the previous transfers of specified source and destination pair. If there is such
a record, stork will use the history information to perform transfers, otherwise,
stork will invoke optimization service to perform estimation on the transfers and
store the results into the database and then provide Stork with these results for
the data transfer. Database is build in Stork by default using SQLLITE.

5.3.1 DAP sample for Optimization Service

The following are the sample DAP file for the optimization service

[

dap_type = "transfer";

src_url = "gsiftp://$src.loni.org/";

dest_url = "gsiftp://$dest.dsl-stork.org/";

arguments = "-s 100M -h":

x509proxy = "default";

output ="tran.out";

err= tran.err";

]

For users, who does not need history option, just remove −h from the arguments
field in the DAP file. Fields like err, output and log are optional for the users.

Following is the result of optimization service

39

===============

status history:

===============

[

status = "request_completed";

dap_id = 10;

timestamp = absTime("2010-09-21T12:11:43-0500")

]

===============

40

Chapter 6

Questions

Direct your questions to stork-devel@cct.lsu.edu, if you have any problems re-
lated to stork. To discuss any issues related to Stork, you are always welcome
to use our group mailing list stork-discuss@cct.lsu.edu

41

Chapter 7

Appendix

42

7.1 Optimization and Estimation results

Figure 7.1 shows the results of optimization service that are done in 10 Gbps
and 100 Mbps networks. Note that , Estimation and optimization service will
predict more accurately depending on sampling size, network conditions and file
size. For more information, users can refer to the following two papers

• A Data Throughput Prediction and Optimization Service for Widely Dis-
tributed Many-Task Computing, Dengpan Yin, Esma Yildirim, Sivakumar
Kulasekaran, Brandon Ross and Tevfik Kosar To appear in IEEE Trans-
actions on Parallel and Distributed Systems-Special Issue on Many-Task
Computing (TPDS-SI),2011.

• Prediction of Optimal Parallelism Level in Wide Area Data Transfers,
Esma Yildirim, Dengpan Yin and Tevfik Kosar , IEEE Transactions on
Parallel and Distributed Systems(TPDS),2010

7.2 Stork Supported OS Platforms

You can check figure 7.3 for various Platforms/Architecture supported by Stork.

43

 1200
 1100
 1000

 900
 800
 700
 600
 500
 400
 300
 200
 100

 0
 100 75 50 25

Th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

5GB file size-Optimization Throughput

Non-optimized Throughput
Optimized Throughput

 90
 80
 70
 60
 50
 40

 20

 0
 100 75 50 25

Ti
m

e
(s

ec
s)

sample size (MB)

5GB file size-Transfer Time

Non-optimized Time
Optimized Time

Optimization Overhead
Optimized Time+ Overhead

 1100
 1000

 900
 800
 700
 600

 400

 100
 0

 100 75 50 25

th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

5GB filesize _Prediction Accuracy

Estimated Throughput
Optimized Throughput

 1200
 1100
 1000

 900
 800
 700
 600
 500
 400
 300
 200
 100

 0
 100 75 50 25

Th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

10GB file size-Optimization Throughput

Non-optimized Throughput
Optimized Throughput

 160
 140
 120
 110

 90
 70

 0
 100 75 50 25

Ti
m

e
(s

ec
s)

sample size (MB)

10GB file size-Transfer Time

Non-optimized Time
Optimized Time

Optimization Overhead
Optimized Time+ Overhead

 1100
 1000

 900
 800
 700
 600

 400

 100
 0

 100 75 50 25

th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

10GB filesize _Prediction Accuracy

Estimated Throughput
Optimized Throughput

 1200
 1100
 1000

 900
 800
 700
 600
 500
 400
 300
 200
 100

 0
 100 75 50 25

Th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

1GB file size-Optimization Throughput

Non-optimized Throughput
Optimized Throughput

 30
 25
 20
 15
 10

 5
 0

 100 75 50 25

Ti
m

e
(s

ec
s)

sample size (MB)

1GB file size-Transfer Time

Non-optimized Time
Optimized Time

Optimization Overhead
Optimized Time+ Overhead

 1100
 1000

 900
 800
 700
 600

 400

 100
 0

 100 75 50 25

th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

1GB filesize _Prediction Accuracy

Estimated Throughput
Optimized Throughput

Figure 7.1: Optimization results over LONI network with 10 Gbps network
interface

44

 60

 40

 30

 20

 10

 0
 20 10 8 5

Th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

256MB file size-Optimization Throughput

Non-optimized Throughput
Optimized Throughput

 100
 80
 60

 20
 0

 20 10 8 5

Ti
m

e
(s

ec
s)

sample size (MB)

256MB file size-Transfer Time

Non-optimized Time
Optimized Time

Optimization Overhead
Optimized Time+ Overhead

 150

 100
 90
 70
 60

 30

 0
 20 10 8 5

th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

256MB filesize _Prediction Accuracy

Estimated Throughput
Optimized Throughput

 100

 60

 40
 30
 20
 10

 0
 20 10 8 5

Th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

512MB file size-Optimization Throughput

Non-optimized Throughput
Optimized Throughput

 300

 200
 180
 160
 140
 100

 20
 0

 20 10 8 5

Ti
m

e
(s

ec
s)

sample size (MB)

512MB file size-Transfer Time

Non-optimized Time
Optimized Time

Optimization Overhead
Optimized Time+ Overhead

 150

 100
 90
 70
 60

 30

 0
 20 10 8 5

th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

512MB filesize _Prediction Accuracy

Estimated Throughput
Optimized Throughput

 60

 40

 30

 20

 10

 0
 20 10 8 5

Th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

1GB file size-Optimization Throughput

Non-optimized Throughput
Optimized Throughput

 500
 450
 400
 350
 300

 0
 20 10 8 5

Ti
m

e
(s

ec
s)

sample size (MB)

1GB file size-Transfer Time

Non-optimized Time
Optimized Time

Optimization Overhead
Optimized Time+ Overhead

 150

 100
 90
 70
 60

 30

 0
 20 10 8 5

th
ro

ug
hp

ut
 (M

bp
s)

sample size (MB)

1GB filesize _Prediction Accuracy

Estimated Throughput
Optimized Throughput

Figure 7.2: Optimization results between 100Mbps and 10 Gbps LONI network
Interface

45

Platforms/Architectures
Core
Stork Globus SRB iRODS Petashare SRM

x86_rhap_5 Yes Yes Yes No No Yes

x86_64_rhas3 Yes Yes Yes Yes Yes Yes

x86_64_rhap_5.3 updated Yes Yes Yes Yes Yes Yes

ia64_rhas_3 Yes Yes Yes No No Yes

x86_deb_4.0 Yes Yes Yes No No Yes

x86_64_deb_5.0 Yes Yes Yes Yes Yes Yes

x86_rhas_3 Yes Yes Yes No No Yes

x86_64_rhap_5.2 Yes Yes Yes Yes Yes Yes

x86_64_rhap_5 Yes Yes Yes Yes Yes Yes

x86_64_rhap_5.3 Yes Yes Yes Yes Yes Yes

x86_64_rhas_4 Yes Yes Yes Yes Yes Yes

x86_sles_9 Yes Yes Yes No No Yes

x86_64_sles_9 Yes Yes Yes Yes Yes Yes

x86_deb_5.0 Yes Yes Yes No No Yes

x86_rhas_4 Yes Yes Yes No No Yes

X86_64_Ubuntu_10.04 Yes No No No No No

ps3_Fedora_9 Yes No No No No No

ps3_ydl_5.0 Yes No No No No No

x86_64_ubuntu_10.04 Yes No No No No No

x86_64_fedora_11 Yes No No No No No
	

Figure 7.3: Stork Supported Platform and Architectures

46

	Introduction to Stork
	Welcome to Stork
	Introduction
	Availability
	Privacy Notice
	Contact Information
	Stork Team
	Acknowledgements
	Copy right

	 Building and Installing Stork
	Installation from Binary Package
	Installation
	Post-installation

	Installation from Source
	Building third party transfer modules
	Configuring
	Building and installing
	Post-installation

	Using Stork
	Starting Stork Server
	Stork Client Tools
	Stork Submit
	Stork Status
	Stork Log
	Stork Remove
	Stork Queue

	Data Transfer using Stork
	Sample DAP submit Job File

	Stork Directory Structure
	bin
	etc
	libexec
	sbin
	log
	tmp

	 Protocols Supported by Stork
	URLs Supported
	Sample Stork Job Requests

	Stork Features
	Stork core features
	File size verification support
	Checksum verification support
	Recursive transfers
	Wild card Support
	Checkpointing File Transfers
	Concurrency
	Max Retry
	Run time
	Stat Report
	Log
	Running Stork in Different Machines
	Security
	Client configuration

	Config Files
	Configuration file Macros

	STORK LOG Features

	Estimation and Optimization Service
	What is Estimation and Optimization service ?
	Using Estimation Service
	Different estimation services
	 Sample Estimation service Submission DAP file
	 Results of Estimation Service

	Using Optimization Service
	DAP sample for Optimization Service

	Questions
	Appendix
	 Optimization and Estimation results
	Stork Supported OS Platforms

