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Abstract

Data placement is an essential part of today’s distributed
applications since moving the data close to the application
has many benefits. The increasing data requirements of both
scientific and commercial applications, and collaborative
access to these data make it even more important. In the
current approach, data placement is regarded as a side af-
fect of computation. Our goal is to make data placement a
first class citizen in distributed computing systems just like
the computational jobs. They will be queued, scheduled,
monitored, managed, and even checkpointed. Since data
placement jobs have different characteristics than compu-
tational jobs, they cannot be treated in the exact same way
as computational jobs. For this purpose, we are propos-
ing a framework which can be considered as a “data place-
ment subsystem” for distributed computing systems, similar
to the I/O subsystem in operating systems. This framework
includes a specialized scheduler for data placement, a high
level planner aware of data placement jobs, a resource bro-
ker/policy enforcer and some optimization tools. Our sys-
tem can perform reliable and efficient data placement, it can
recover from all kinds of failures without any human inter-
vention, and it can dynamically adapt to the environment at
the execution time.

Key words. Distributed computing, reliable and efficient
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1. Introduction

The data requirements of both scientific and commer-
cial applications have been increasing drastically in recent
years. Just a couple of years ago, the data requirements
for an average scientific application were measured in ter-
abytes, whereas today we use petabytes to measure them.

Moreover, these data requirements continue to increase
rapidly every year, and in less than a decade they are ex-
pected to reach the exabyte (1 million terabytes) scale [37].

The problem is not only the massive I/O needs of the data
intensive applications, but also the number of users who will
access and share the same datasets. For a range of applica-
tions from genomics to biomedical, and from metallurgy
to cosmology, number of people who will be accessing the
datasets range from 100s to 1000s. Furthermore, these users
are not located at a single site; rather they are distributed all
across the country, even the globe. Therefore, there is a big
necessity to move large amounts of data around wide area
networks for processing and for replication, which brings
with it the problem of reliable and efficient data placement.
Data needs to be located, moved to the application, staged
and replicated; storage should be allocated and de-allocated
for the data whenever necessary; and everything should be
cleaned up when the user is done with the data.

Just as computation and network resources need to be
carefully scheduled and managed, the scheduling of data
placement activities all across the distributed computing
systems is crucial, since the access to data is generally the
main bottleneck for data intensive applications. This is es-
pecially the case when most of the data is stored on tape
storage systems, which slows down access to data even fur-
ther due to the mechanical nature of these systems.

The current approach to solve this problem of data place-
ment is either doing it manually, or employing simple
scripts, which do not have any automation or fault tolerance
capabilities. They cannot adapt to a dynamically chang-
ing distributed computing environment. They do not have
a single point of control, and generally require baby-sitting
throughout the process. There are even cases where peo-
ple found a solution for data placement by dumping data to
tapes and sending them via postal services [18].

Data placement activities must be first class citizens in
the distributed computing environments just like the com-



putational jobs. They need to be queued, scheduled, mon-
itored, and even check-pointed. More importantly, it must
be made sure that they complete successfully and without
any need for human intervention. Currently, data placement
is generally not considered part of the end-to-end perfor-
mance, and requires lots of baby-sitting. In our approach,
the end-to-end processing of the data will be completely au-
tomated, so that the user can just launch a batch of compu-
tational/data placement jobs and then forget about it.

Moreover, data placement jobs should be treated differ-
ently from computational jobs, since they have different se-
mantics and different characteristics. Data placement jobs
and computational jobs should be differentiated from each
other and each should be submitted to specialized sched-
ulers that understand their semantics. For example, if the
transfer of a large file fails, we may not simply want to
restart the job and re-transfer the whole file. Rather, we may
prefer transferring only the remaining part of the file. Sim-
ilarly, if a transfer using one protocol fails, we may want to
try other protocols supported by the source and destination
hosts to perform the transfer. We may want to dynamically
tune up network parameters or decide concurrency level for
specific source, destination and protocol triples. A tradi-
tional computational job scheduler does not handle these
cases. For this purpose, we have developed a “data place-
ment subsystem” for distributed computing systems, sim-
ilar to the I/O subsystem in operating systems. This sub-
system includes a specialized scheduler for data placement,
a higher level planner aware of data placement jobs, a re-
source broker/policy enforcer and some optimization tools.

This data placement subsystem provides complete
reliability, a level of abstraction between errors and
users/applications, ability to achieve load balancing on the
storage servers, and to control the traffic on network links.
It also allows the users to perform these two types of jobs
asynchronously.

We show applicability and contributions of our work
with three important case studies. Two of these case stud-
ies are from real world: a data processing pipeline for ed-
ucational video processing and a data transfer pipeline for
astronomy image processing. Our system can be used to
transfer data between heterogeneous systems fully automat-
ically. It can recover from storage system, network and soft-
ware failures without any human interaction. It can dynam-
ically adapt data placement jobs to the environment at the
execution time.

2. Background

I/O has been very important throughout the history of
computing, and special attention given to it to make it more
reliable and efficient both in hardware and software levels.

In the old days, the CPU was responsible for carrying out

all data transfers between I/O devices and the main memory
at the hardware level. The overhead of initiating, monitor-
ing and actually moving all data between the device and
the main memory was too high to permit efficient utiliza-
tion of CPU. To alleviate this problem, additional hardware
was provided in each device controller to permit data to be
directly transferred between the device and main memory,
which led to the concepts of DMA (Direct Memory Ac-
cess) and I/O processors (channels). All of the I/O related
tasks are delegated to the specialized I/O processors, which
were responsible for managing several I/O devices at the
same time and supervising the data transfers between each
of these devices and main memory [7].

On the operating systems level, initially the users had to
write all of the code necessary to access complicated I/O
devices. Later, low level I/O coding needed to implement
basic functions was consolidated to an I/O Control System
(IOCS). This greatly simplified users’ jobs and sped up the
coding process [14]. Afterwards, an I/O scheduler was de-
veloped on top of IOCS that was responsible for execution
of the policy algorithms to allocate channel (I/O processor),
control unit and device access patterns in order to serve I/O
requests from jobs efficiently [31].

When we consider scheduling of I/O requests at the dis-
tributed systems level, we do not see the same recognition
given them. They are not even considered as tasks that
need to be scheduled and monitored independently. There
has been a lot of work on remote access to data [22] [33],
but this approach does not scale well as the target data set
size increases. Moving the application closer to the data is
not always practical, since storage systems generally do not
have sufficient computational resources nearby. The general
approach for large data sets is to move data to the applica-
tion. Therefore, data need to be located and sent to process-
ing sites; the results should be shared with other sites; stor-
age space should be allocated and de-allocated whenever
necessary; and everything should be cleaned up afterwards.
Although these data placement activities are of great im-
portance for the end-to-end performance of an application,
they are generally considered as side effects of computa-
tion. They are either embedded into computational jobs, or
performed using simple scripts.

Our framework and the system we have developed give
data placement its recognition in distributed systems. This
system can be considered as an I/O (or data placement) sub-
system in a distributed computing environment.

3. Data Placement Subsystem

Most of the data intensive applications in distributed
computing systems require moving the input data for the
job from a remote site to the execution site, executing the
job, and then moving the output data from execution site to
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Figure 1. Separating data placement form
computation. Computation at a remote site with
input and output data requirements can be achieved
with a new five-step plan, in which computation and
data placement are separated. This is represented as a
six node DAG in the figure.

the same or another remote site. If the application does not
want to take any risk of running out of disk space at the exe-
cution site, it should also allocate space before transferring
the input data there, and release the space after it moves out
the output data from there.

We regard all of these computational and data placement
steps as real jobs and represent them as nodes in a Directed
Acyclic Graph (DAG). The dependencies between them are
represented as directed arcs, as shown in Figure 1.

In our framework, the data placement jobs are repre-
sented in a different way than computational jobs in the
job specification language, so that the high level planners
(i.e. Pegasus [13], Chimera [23]) can differentiate these
two classes of jobs. The high level planners create con-
crete DAGs with also data placement nodes in them. Then,
the planner submits this concrete DAG to a workflow man-
ager (i.e. DAGMan [44]). The workflow manager submits
computational jobs to a compute job queue, and the data
placement jobs to a data placement job queue. Jobs in each
queue are scheduled by the corresponding scheduler. Since
our focus in this work is on the data placement part, we do
not get into details of the computational job scheduling.

The data placement scheduler acts both as a I/O control
system and I/O scheduler in a distributed computing envi-
ronment. Each protocol and data storage system have dif-
ferent user interface, different libraries and different API.
In the current approach, the users need to deal with all com-
plexities of linking to different libraries, and using differ-
ent interfaces of data transfer protocols and storage servers.

Figure 2. Components of the Data Placement
Subsystem. The components of our data placement
subsystem are shown in gray color in the figure.

Our data placement scheduler provides a uniform interface
for all different protocols and storage servers, and puts a
level of abstraction between the user and them.

The data placement scheduler schedules the jobs in its
queue according to the information it gets from the work-
flow manager and from the resource broker/policy enforcer.
The resource broker matches resources to jobs, and helps
in locating the data and making decisions such as where
to move the data. It consults a replica location service (i.e.
RLS [11]) whenever necessary. The policy enforcer helps in
applying the resource specific or job specific policies, such
as how many concurrent connections are allowed to a spe-
cific storage server.

The log files of the jobs are collected by the data miner.
The data miner parses these logs and extracts useful infor-
mation from them such as different events, timestamps, er-
ror messages and utilization statistics. Then this informa-
tion is entered into a database. The data miner runs a set of
queries on the database to interpret them and then feeds the
results back to the scheduler and the resource broker/policy
enforcer.

The network monitoring tools collect statistics on maxi-

3



Figure 3. Interaction with Higher Level Plan-
ners. Our data placement scheduler (Stork) can in-
teract with a higher level planners and workflow man-
agers. A concrete DAG created by Chimera and Pe-
gasus is sent to DAGMan. This DAG consists of
both computational and data placement jobs. DAG-
Man submits computational jobs to a computational
batch scheduler (Condor/Condor-G), and data place-
ment jobs to Stork.

mum available end-to-end bandwidth, actual bandwidth uti-
lization, latency and number of hops to be traveled by uti-
lizing tools such as Pathrate [16] and Iperf [34]. Again, the
collected statistics are fed back to the scheduler and the re-
source broker/policy enforcer.

The components of our data placement subsystem and
their interaction with other components are shown in Fig-
ure 2. The most important component of this system is the
data placement scheduler, which can understand the char-
acteristics of the data placement jobs and can make smart
scheduling decisions accordingly. In the next section, we
present the features of this scheduler in detail.

4. Data Placement Scheduler (Stork)

We have implemented a prototype of the data placement
scheduler we are proposing. We call this scheduler Stork.
Stork provides solutions for many of the data placement
problems encountered in the distributed computing environ-
ments.

Interaction with Higher Level Planners. Stork can in-
teract with higher level planners and workflow managers.
This allows the users to be able to schedule both CPU re-
sources and storage resources together. We made some
enhancements to DAGMan, so that it can differentiate be-

tween computational jobs and data placement jobs. It
can then submit computational jobs to a computational job
scheduler, such as Condor [29] or Condor-G [24], and the
data placement jobs to Stork. Figure 3 shows a sample DAG
specification file with the enhancement of data placement
nodes, and how this DAG is handled by DAGMan.

In this way, it can be made sure that an input file required
for a computation arrives to a storage device close to the ex-
ecution site before actually that computation starts execut-
ing on that site. Similarly, the output files can be removed to
a remote storage system as soon as the computation is com-
pleted. No storage device or CPU is occupied more than it
is needed, and jobs do not wait idle for their input data to
become available.

Interaction with Heterogeneous Resources. Stork acts
like an I/O control system (IOCS) between the user ap-
plications and the underlying protocols and data storage
servers. It provides complete modularity and extendibility.
The users can add support for their favorite storage system,
data transport protocol, or middleware very easily. This is
a very crucial feature in a system designed to work in a
heterogeneous distributed environment. The users or ap-
plications may not expect all storage systems to support the
same interfaces to talk to each other. And we cannot expect
all applications to talk to all the different storage systems,
protocols, and middleware. There needs to be a negotiating
system between them which can interact with those systems
easily and even translate different protocols to each other.
Stork has been developed to be capable of this. The modu-
larity of Stork allows users to insert a plug-in to support any
storage system, protocol, or middleware easily.

Stork already has support for several different storage
systems, data transport protocols, and middleware. Users
can use them immediately without any extra work. Stork
can interact currently with data transfer protocols such
as FTP [36], GridFTP [2], HTTP and DiskRouter [25];
data storage systems such as SRB [3], UniTree [9], and
NeST [12]; and data management middleware such as
SRM [41].

Stork maintains a library of pluggable “data placement”
modules. These modules get executed by data placement
job requests coming into Stork. They can perform inter-
protocol translations either using a memory buffer or third-
party transfers whenever available. Inter-protocol transla-
tions are not supported between all systems or protocols
yet. Figure 4 shows the available direct inter-protocol trans-
lations that can be performed using a single Stork job.

In order to transfer data between systems for which di-
rect inter-protocol translation is not supported, two consec-
utive Stork jobs can be used instead. The first Stork job per-
forms transfer from the source storage system to the local
disk cache of Stork, and the second Stork job performs the
transfer from the local disk cache of Stork to the destination
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Figure 4. Protocol Translation using Stork
Memory Buffer or Third-party Transfers.
Transfers between some storage systems and proto-
cols can be performed directly using one Stork job
via memory buffer or third-party transfers.

storage system. This is shown in Figure 5.
Flexible Job Representation and Multilevel Policy

Support. Stork uses the ClassAd [38] job description lan-
guage to represent the data placement jobs. The ClassAd
language provides a very flexible and extensible data model
that can be used to represent arbitrary services and con-
straints.

Figure 6 shows three sample data placement (DaP) re-
quests. The first request is to allocate 100 MB of disk space
for 2 hours on a NeST server. The second request is to trans-
fer a file from an SRB server to the reserved space on the
NeST server. The third request is to de-allocate the previ-
ously reserved space. In addition to the “reserve”, “trans-
fer”, and “release”, there are also other data placement job
types such as “locate” to find where the data is actually lo-
cated and “stage” to move the data from a tertiary storage
to a secondary storage next to it in order to decrease data
access time during actual transfers.

Stork enables users to specify job level policies as well
as global ones. Global policies apply to all jobs scheduled
by the same Stork server. Users can override them by spec-
ifying job level policies in job description ClassAds. The
example below shows how to override global policies at the
job level.

[
dap_type = ‘‘transfer’’;
...
...
max_retry = 10;
restart_in = ‘‘2 hours’’;

]

Figure 5. Protocol Translation using Stork
Disk Cache. Transfers between all storage systems
and protocols supported can be performed using two
Stork jobs via an intermediate disk cache.

In this example, the user specifies that the job should be
retried up to 10 times in case of failure, and if the transfer
does not get completed in 2 hours, it should be killed and
restarted.

Dynamic Protocol Selection. Stork can decide which
data transfer protocol to use for each transfer dynamically
and automatically at the run-time. Before performing each
transfer, Stork makes a quick check to identify which proto-
cols are available for both the source and destination hosts
involved in the transfer. Stork first checks its own host-
protocol library to see whether all of the hosts involved in
the transfer are already in the library or not. If not, Stork
tries to connect to those particular hosts using different data
transfer protocols, to determine the availability of each spe-
cific protocol on that particular host. Then Stork creates the
list of protocols available on each host, and stores these lists
as a library:

[
host_name = "quest2.ncsa.uiuc.edu";
supported_protocols = "diskrouter, gridftp, ftp";

]
[

host_name = "nostos.cs.wisc.edu";
supported_protocols = "gridftp, ftp, http";

]

If the protocols specified in the source and destination
URLs of the request fail to perform the transfer, Stork will
start trying the protocols in its host-protocol library to carry
out the transfer. The users also have the option not to spec-
ify any particular protocols in the request, letting Stork to
decide which protocol to use at run-time:

[
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Figure 6. Job representation in Stork. Three
sample data placement (DaP) requests are shown:
first one to allocate space, second one to transfer a
file to the reserved space, and third one to de-allocate
the reserved space.

dap_type = "transfer";
src_url = "any://slic04.sdsc.edu/tmp/foo.dat";
dest_url = "any://quest2.ncsa.uiuc.edu/tmp/foo.dat";

]

In the above example, Stork will select any of the avail-
able protocols on both source and destination hosts to per-
form the transfer. Therefore, the users do not need to care
about which hosts support which protocols. They just send
a request to Stork to transfer a file from one host to another,
and Stork will take care of deciding which protocol to use.

The users can also provide their preferred list of alterna-
tive protocols for any transfer. In this case, the protocols
in this list will be used instead of the protocols in the host-
protocol library of Stork:

[
dap_type = "transfer";
src_url = "drouter://slic04.sdsc.edu/tmp/foo.dat";
dest_url = "drouter://quest2.ncsa.uiuc.edu/tmp/foo.dat";
alt_protocols = "nest-nest, gsiftp-gsiftp";

]

In this example, the user asks Stork to perform the a
transfer from slic04.sdsc.edu to quest2.ncsa.uiuc.edu using
the DiskRouter protocol primarily. The user also instructs
Stork to use any of the NeST or GridFTP protocols in case
the DiskRouter protocol does not work. Stork will try to
perform the transfer using the DiskRouter protocol first. In
case of a failure, it will switch to the alternative protocols
and will try to complete the transfer successfully. If the pri-
mary protocol becomes available again, Stork will switch
to it again. Hence, whichever protocol is available will be
used to successfully complete user’s request.

Run-time Protocol Auto-tuning. Statistics for each link
involved in the transfers are collected regularly and written
into a file, creating a library of network links, protocols and
auto-tuning parameters.

[
link = "slic04.sdsc.edu - quest2.ncsa.uiuc.edu";
protocol = "gsiftp";

bs = 1024KB; //block size
tcp_bs = 1024KB; //TCP buffer size
p = 4; //parallelism

]

Before performing every transfer, Stork checks its auto-
tuning library to see if there are any entries for the particular
hosts involved in this transfer. If there is an entry for the
link to be used in this transfer, Stork uses these optimized
parameters for the transfer. Stork can also be configured to
collect performance data before every transfer, but this is
not recommended due to the overhead it would bring to the
system.

Failure Recovery. Stork hides any kind of temporary
network, storage system, middleware, or software failures
from user applications. It has a “retry” mechanism, which
can retry any failing data placement job any given number
of times before returning a failure. It also has a “kill and
restart” mechanism, which allows users to specify a “max-
imum allowable run time” for their data placement jobs.
When a job execution time exceeds this specified time, it
will be killed by Stork automatically end restarted. This
feature overcomes the bugs in some systems, which cause
the transfers to hang forever and never return. This can be
repeated any number of times, again specified by the user.

Efficient Resource Utilization. Stork can control the
number of concurrent requests coming to any storage sys-
tem it has access to, and makes sure that neither that storage
system nor the network link to that storage system get over-
loaded. It can also perform space allocation and dealloca-
tions to make sure that the required storage space is avail-
able on the corresponding storage system. The space reser-
vations are supported by Stork as long as the corresponding
storage systems have support for it.

5. Case Studies

We will now show the applicability and contributions of
our data placement subsystem with three case studies. The
first case study shows using Stork to create a data-pipeline
between two heterogeneous storage systems. In this case,
Stork is used to transfer data between two mass storage sys-
tems which do not have a common interface. This is done
fully automatically and all failures during the course of the
transfers are recovered without any human interaction. The
second case study shows how our data placement subsystem
can be used for run-time adaptation of data transfers. If data
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Figure 7. Data-pipeline with Two Intermediate
Nodes. Building a data-pipeline with two interme-
diate nodes, one close to the source and one close to
the destination, may provide additional functionality
and increase performance.

transfer with one particular protocol fails, Stork uses other
protocols available to successfully complete the transfer. In
case where the network parameters are not well tuned, our
data placement subsystem can perform auto-tuning during
run-time. In the third case study, we have built a fully auto-
mated data processing pipeline to process terabytes of edu-
cational video.

5.1. Building Data-pipelines

NCSA scientists wanted to transfer the Digital Palomar
Sky Survey (DPOSS) [15] image data residing on SRB [3]
mass storage system at SDSC in California to their UniTree
mass storage system at NCSA in Illinois. The total data
size was around 3 TB (2611 files of 1.1 GB each). Since
there was no direct interface between SRB and UniTree at
the time of the experiment, the only way to perform the data
transfer between these two storage systems was to build a
data pipeline. For this purpose, we have designed a data-
pipeline using Stork.

In this pipeline, we set up two cache nodes between the
source and destination storage systems. The first cache node
(slic04.sdsc.edu) was at the SDSC site very close to the SRB
server, and the second cache node (quest2.ncsa.uiuc.edu)
was at the NCSA site near the UniTree server. This pipeline
configuration allowed us to transfer data first from the SRB
server to the SDSC cache node using the underlying proto-
col of SRB, then from the SDSC cache node to the NCSA
cache node using third-party DiskRouter transfers, and fi-
nally from the NCSA cache node to the UniTree server us-

Figure 8. Transfer in five Steps. Nodes repre-
senting the five steps of a single transfer are combined
into a giant DAG to perform all transfers in the SRB -
UniTree data-pipeline. k is the concurrency level.

ing the underlying protocol of UniTree. This pipeline con-
figuration is shown in Figure 7.

The NCSA cache node had only 12 GB of local disk
space for our use and we could store only 10 image files
in that space. This implied that whenever we were done
with a file at the cache node, we had to remove it from there
to create space for the transfer of another file. Including
the removal step of the file, the end-to-end transfer of each
file consisted of five basic steps, all of which we considered
as real jobs to be submitted either to the Condor or Stork
scheduling systems. All of these steps are represented as
nodes in a DAG with arcs representing the dependencies
between the steps. Then all of these five node DAGs were
joined together to form a giant DAG as shown in Figure 8.
The whole process was managed by DAGMan.

The SRB server, the UniTree server, and the SDSC cache
node had gigabit ethernet (1000 Mb/s) interface cards in-
stalled on them. The NCSA cache node had a fast ether-
net (100 Mb/s) interface card installed on it. We found the
bottleneck link to be the fast ethernet interface card on the
NCSA cache node. We got an end-to-end transfer rate of
47.6 Mb/s from the SRB server to the UniTree server.

In this study, we have shown that we can successfully
build a data-pipeline between two heterogeneous mass-
storage systems, SRB and UniTree. Moreover, we have
fully automated the operation of the pipeline and success-
fully transferred around 3 terabytes of DPOSS data from
the SRB server to the UniTree server without any human
interaction.

During the transfers between SRB and UniTree, we had
a wide variety of failures. At times, either the source
or the destination mass-storage systems stopped accepting
new transfers, due to either software failures or scheduled
maintenance activity. We also had wide-area network out-
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Figure 9. Automated Failure Recovery. The
transfers recovered automatically despite almost all
possible failures occurring one after the other: a)
The UniTree server stops responding, the DiskRouter
server gets reconfigured and restarted during the
transfers b) UW CS network goes down, SDSC cache
node goes down, and finally there was a problem with
the DiskRouter server.

ages, and software upgrades. Occasionally, a third-party
DiskRouter transfer would hang. All of these failures were
recovered automatically and the transfers were completed
successfully without any human interaction.

Figure 9 shows multiple failures occurring during the
course of the transfers. First, the SDSC cache machine
was rebooted and then there was a UW CS network out-
age which disconnected the management site and the ex-
ecution sites for a couple of hours. The pipeline auto-
matically recovered from these two failures. Finally, the
DiskRouter server stopped responding for a couple of hours.
The DiskRouter problem was partially caused by a network
reconfiguration at StarLight hosting the DiskRouter server.
Here again, our automatic failure recovery worked fine.

5.2. Run-time Adaptation of Data Transfers

We have performed two different experiments to evalu-
ate the effectiveness of our dynamic protocol selection and
run-time protocol tuning mechanisms. We also collected
performance data to show the contribution of these mecha-
nisms to wide area data transfers.

Dynamic Protocol Selection. We submitted 500 data
transfer requests to the Stork server running at University of

Figure 10. Experiment Setup. DiskRouter and
GridFTP protocols are used to transfer data from
SDSC to NCSA. Stork was running at the Manage-
ment site, and making scheduling decisions for the
transfers.

Wisconsin (skywalker.cs.wisc.edu). Each request consisted
of transfer of a 1.1GB image file (total 550GB) from SDSC
(slic04.sdsc.edu) to NCSA (quest2.ncsa.uiuc.edu) using the
DiskRouter protocol. There was a DiskRouter server in-
stalled at Starlight (ncdm13.sl.startap.net) which was re-
sponsible for routing DiskRouter transfers. There were
also GridFTP servers running on both SDSC and NCSA
sites, which enabled us to use third-party GridFTP trans-
fers whenever necessary. The experiment setup is shown in
Figure 10.

At the beginning of the experiment, both DiskRouter and
GridFTP services were available. Stork started transferring
files from SDSC to NCSA using the DiskRouter protocol as
directed by the user. After a while, we killed the DiskRouter
server running at Starlight intentionally. Stork immediately
switched the protocols and continued the transfers using
GridFTP without any interruption. Switching to GridFTP
caused a decrease in the performance of the transfers, as
shown in Figure 11. The reason of this decrease in per-
formance is that GridFTP does not perform auto-tuning
whereas DiskRouter does. In this experiment, we set the
number of parallel streams for GridFTP transfers to 10, but
we did not perform any tuning of disk I/O block size or
TCP buffer size. DiskRouter performs auto-tuning for the
network parameters including the number of TCP-streams
in order to fully utilize the available bandwidth. DiskRouter
can also use sophisticated routing to achieve better perfor-
mance.

After letting Stork use the alternative protocol (in this
case GridFTP) to perform the transfers for a while, we
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Figure 11. Dynamic Protocol Selection. The
DiskRouter server running on the SDSC machine is
killed twice at points (1) and (3), and it is restarted at
points (2) and (4). In both cases, Stork employed next
available protocol (GridFTP in this case) to complete
the transfers.

restarted the DiskRouter server at the SDSC site. This time,
Stork switched back to using DiskRouter for the transfers,
since it was the preferred protocol of the user. Switching
back to the faster protocol resulted in an increase in the per-
formance. We repeated this couple of more times, and ob-
served that the system behaved in the same way every time.

This experiment shows that with alternate protocol fall-
over capability, grid data-placement jobs can make use of
the new high performance protocols while they work and
switch to more robust lower performance protocol when the
high performance one fails.

Run-time Protocol Auto-tuning. In the second experi-
ment, we submitted another 500 data transfer requests to the
Stork server. Each request was to transfer a 1.1GB image
file (total 550 GB) using GridFTP as the primary protocol.
We used third-party globus-url-copy transfers without any
tuning and without changing any of the default parameters.

Parameter Before auto-tuning After auto-tuning

parallelism 1 TCP stream 4 TCP streams
block size 1 MB 1 MB
tcp buffer size 64 KB 256 KB

Table 1. Network parameters for gridFTP be-
fore and after auto-tuning feature of Stork be-
ing turned on.

We turned off the auto-tuning feature of Stork at the be-

Figure 12. Run-time Protocol Auto-tuning.
Stork starts the transfers using the GridFTP proto-
col with auto-tuning turned off intentionally. Then
we turn th e auto-tuning on, and the performance in-
creases drastically

ginning of the experiment intentionally. The average data
transfer rate that globus-url-copy could get without any tun-
ing was only 0.5 MB/s. The default network parameters
used by globus-url-copy are shown in Table 1. After a
while, we turned on the auto-tuning feature of Stork. Stork
first obtained the optimal values for I/O block size, TCP
buffer size and the number of parallel TCP streams from
the underlying monitoring and tuning infrastructure. Then
it applied these values to the subsequent transfers. Figure 12
shows the increase in the performance after the auto-tuning
feature is turned on. We got a speedup of close to 20 times
compared to transfers without tuning.

5.3. Educational Video Processing Pipeline

Wisconsin Center for Educational Research (WCER)
wanted to process nearly 500 terabytes of educational video.
They wanted to get mpeg1, mpeg2 and mpeg4 encodings
from the original DV format and make all formats electron-
ically available for collaborating researchers. They wanted
the videos to be stored both in their storage server and at
the SRB mass storage at San Diego supercomputing cen-
ter (SDSC). They did not have the necessary computational
power nor the infrastructure to process and replicate these
videos.

We have created a video processing pipeline for them
using Condor and Stork technologies. The video files (each
13GB) first get transferred from WCER to a staging area at
UW CS Department. Since the internal file transfer mech-
anism of Condor did not support files larger than 2 GB, we
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Figure 13. WCER Configuration

split the files here into 2 GB junks and transferred them to
individual compute nodes. At each compute node, these
2GB junks got merged again and processed. The encoded
mpeg files got transferred back to the staging node, and
from here back to WCER. A copy of each file got replicated
to the SRB server at SDSC. The whole process was man-
aged by DAGMan, and it was performed fully automatically
without any human intervention. This pipeline is shown in
Figure 13.

6. Related Work

Visualization scientists at Los Alamos National Labora-
tory (LANL) found a solution for data placement by dump-
ing data to tapes and sending them to Sandia National Lab-
oratory (SNL) via Federal Express, because this was faster
than electronically transmitting them via TCP over the 155
Mbps(OC-3) WAN backbone [18].

The Reliable File Transfer Service(RFT) [30] allows
byte streams to be transferred in a reliable manner. RFT can
handle wide variety of problems like dropped connections,
machine reboots, and temporary network outages automati-
cally via retrying. RFT is built on top of GridFTP [1], which
is a secure and reliable data transfer protocol especially de-
veloped for high-bandwidth wide-area networks.

The Lightweight Data Replicator (LDR) [26] can repli-
cate data sets to the member sites of a Virtual Organiza-
tion or DataGrid. It was primarily developed for replicat-
ing LIGO [28] data, and it makes use of Globus [21] tools
to transfer data. Its goal is to use the minimum collection
of components necessary for fast and secure replication of
data. Both RFT and LDR work only with a single data trans-
port protocol, which is GridFTP.

There is ongoing effort to provide a unified interface
to different storage systems by building Storage Resource
Managers (SRMs) [41] on top of them. Currently, a couple
of data storage systems, such as HPSS [39], Jasmin [8] and

Enstore [20], support SRMs on top of them. SRMs can also
manage distributed caches using “pinning of files”.

The SDSC Storage Resource Broker (SRB) [3] aims to
provide a uniform interface for connecting to heterogeneous
data resources and accessing replicated data sets. SRB uses
a Metadata Catalog (MCAT) to provide a way to access data
sets and resources based on their attributes rather than their
names or physical locations.

Thain et. al. propose the Ethernet approach [42] to dis-
tributed computing, in which they introduce a simple script-
ing language which can handle failures in a manner similar
to exceptions in some languages. The Ethernet approach is
not aware of the semantics of the jobs it is running, its duty
is retrying any given job for a number of times in a fault
tolerant manner.

Network Weather Service (NWS) [46] is a distributed
system which periodically gathers readings from network
and CPU resources, and uses numerical models to generate
forecasts for a given time frame. Vazhkudai [45] found that
the network throughput predicted by NWS was much less
than the actual throughput achieved by GridFTP.

Semke [40] introduces automatic TCP buffer tuning.
Here the receiver is expected to advertise large enough win-
dows. Fisk [19] points out the problems associated with
[40] and introduces dynamic right sizing which changes
the receiver window advertisement according to estimated
sender congestion window.

Fearman et. al [17] introduce the Adaptive Regression
Modeling (ARM) technique to forecast data transfer times
for network-bound distributed data-intensive applications.
Ogura et. al [35] try to achieve optimal bandwidth even
when the network is under heavy contention, by dynam-
ically adjusting transfer parameters between two clusters,
such as the number of socket stripes and the number of net-
work nodes involved in transfer.

In [10], Carter et. al. introduce tools to estimate the
maximum possible bandwidth along a given path, and to
calculate the current congestion along a path. Using these
tools, they demonstrate how dynamic server selection can
be performed to achieve application-level congestion avoid-
ance.

Application Level Schedulers (AppLeS) [6] have been
developed to achieve efficient scheduling by taking into ac-
count both application-specific and dynamic system infor-
mation. AppLeS agents use dynamic system information
provided by the NWS.

Beck et. al. introduce Logistical Networking [4] which
performs global scheduling and optimization of data move-
ment, storage and computation based on a model that
takes into account all the network’s underlying physical re-
sources. Kangaroo [43] tries to achieve high throughput by
making opportunistic use of disk and network resources.

GFarm [32] provides a global parallel filesystem with
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online petascale storage. Their model specifically targets
applications where data primarily consists of a set of records
or objects which are analyzed independently. Gfarm takes
advantage of this access locality to achieve a scalable I/O
bandwidth using a parallel filesystem integrated with pro-
cess scheduling and file distribution.

OceanStore [27] aims to build a global persistent data
store that can scale to billions of users. The basic idea is
that any server may create a local replica of any data object.
These local replicas provide faster access and robustness
to network partitions. Both Gfarm and OceanStore require
creating several replicas of the same data, but still they do
not address the problem of scheduling the data movement
when there is no replica close to the computation site.

BAD-FS [5] builds a batch aware distributed filesys-
tem for data intensive workloads. This is general purpose
and serves workloads more data intensive than conventional
ones. For performance reasons it prefer to access source
data from local disk rather than over a network filesystem.
Further, BAD-FS at present does not schedule wide-area
data movement which we feel is necessary for large data
sets.

7. Future Work

We are planning to enhance the interaction between our
data placement scheduler and the higher level planners and
workflow managers like DAGMan, Pagasus and Chimera.
This will result in better co-scheduling of computational
and data resources and will allow users to use both resources
more efficiently.

We are planning to add more intelligence and adaptation
to transfers. Different data transfer protocols may have dif-
ferent optimum concurrency levels for any two source and
destination nodes. Our data placement subsystem will be
able to decide the concurrency level of the transfers it is
performing, taking into consideration the source and desti-
nation nodes of the transfer, the link it using, and more im-
portantly, the protocol with which it is performing the trans-
fers. In case of availability of multiple protocols to transfer
data between different nodes, the data placement scheduler
will be able to choose the on with the best performance, or
the most reliable one according to the user preferences.

Our data placement subsystem will be able to decide
through which path, ideally the optimum one, to transfer
data by an enhanced integration with the underlying net-
work and data transfer tools. Another enhancement will be
done with adding check-pointing support to data placement
jobs. Whenever a transfer fails, it will not be started from
scratch, but rather only the remaining parts of the file will
be transfered.

8. Conclusion

We have introduced a data placement subsystem for re-
liable and efficient data placement in distributed computing
systems. Data placement efforts which has been done ei-
ther manually or by using simple scripts are now regarded
as first class citizens just like the computational jobs. They
can be queued, scheduled, monitored and managed in a
fault tolerant manner. We have showed the how our sys-
tem can provide solutions to the data placement problems
of the distributed systems community. We introduced a
framework in which computational and data placement jobs
are treated and scheduled differently by their corresponding
schedulers, where the management and synchronization of
both type of jobs is performed by higher level planners.

With several case studies, we have shown the applica-
bility and contributions of our data placement subsystem.
It can be used to transfer data between heterogeneous sys-
tems fully automatically. It can recover from storage sys-
tem, network and software failures without any human in-
teraction. It can dynamically adapt data placement jobs
to the environment at the execution time. We have shown
that it generates better performance results by dynamically
switching to alternative protocols in case of a failure. It
can help auto-tuning some network parameters to achieve
higher data transfer rate. We have also shown that how our
system can be used in interaction with other schedulers and
higher level planners to create reliable, efficient and fully
automated data processing pipelines.
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