
A New Paradigm in Data Intensive Computing:
Stork and the Data-Aware Schedulers

Tevfik Kosar∗

Abstract— The unbounded increase in the computation and
data requirements of scientific applications has necessitated
the use of widely distributed compute and storage resources
to meet the demand. In a widely distributed environment,
data is no more locally accessible and has thus to be remotely
retrieved and stored. Efficient and reliable access to data
sources and archiving destinations in such an environment
brings new challenges. Placing data on temporary local storage
devices offers many advantages, but such “data placements”
also require careful management of storage resources and data
movement, i.e. allocating storage space, staging-in of input data,
staging-out of generated data, and de-allocation of local storage
after the data is safely stored at the destination. Traditional
systems closely couple data placement and computation, and
consider data placement as a side effect of computation. Data
placement is either embedded in the computation and causes
the computation to delay, or performed as simple scripts which
do not have the privileges of a job. The insufficiency of the
traditional systems and existing CPU-oriented schedulers in
dealing with the complex data handling problem has yielded
a new emerging era: the data-aware schedulers. One of the
first examples of such schedulers is the Stork data placement
scheduler. In this paper, we will discuss the limitations of
the traditional schedulers in handling the challenging data
scheduling problem of large scale distributed applications; give
our vision for the new paradigm in data-intensive scheduling;
and elaborate on our case study: the Stork data placement
scheduler.

Index Terms— Scheduling, data-aware, data-intensive, Grid,
Stork, staging, storage management, data placement.

I. INTRODUCTION

The computational and data requirements of scientific appli-
cations have been increasing drastically over the recent years.
In year 2000, the total amount of data to be processed by
scientific applications was on the order of a couple hundred
terabytes per year. This amount is expected to reach the order
of several million terabytes per year by 2010. This exponential
increase in the size of scientific data has already outpaced the
increase in the computational power and the storage space
predicted by the Moore’s Law [1] [2].

Figure 1 shows the increase solely in the genomics datasets
over the last decade [3] and its comparison with the expected
growth according to the Moore’s Law. When we include the
data from other fields of science such as astronomy, high
energy physics, chemistry, earth sciences, and educational
technology to this picture, the total amount of data to be
processed is hard to estimate and far more than the current

∗Department of Computer Science & CCT, Louisiana State University,
Baton Rouge, LA 70803, USA

 10

 20

 30

 40

 50

 1994 1997 2000 2003

 10

 20

 30

 40

 50

B
as

e
P

ai
rs

 o
f D

N
A

 (
bi

lli
on

s)

C
om

pu
ta

tio
na

l P
ow

er
 (

10
0

M
IP

S
/$

1K
)

Year

Genome Data
Moore’s Law

Fig. 1. Growth of Genomics Datasets [Source: National Center for
Biotechnology Information (NCBI)]

computational infrastructure can handle. Table I shows the data
requirements of some of the scientific applications in different
areas.

Large amounts of scientific data also require large amounts
of computational power in order to be processed in a reason-
able time scale. The number of CPUs necessary for ATLAS [9]
and CMS [10] applications alone is on the order of hundred
thousands. These high computational and data requirements
of scientific applications necessitated the use of widely dis-
tributed resources owned by collaborating parties to meet the
demand. There has been considerable amount of work done
on distributed computing [11] [12] [13] [14], batch schedul-
ing [15] [16] [17] [18], and Grid computing [19] [20] [21] [22]
to address this problem.

While existing solutions work well for compute-intensive
applications, they fail to meet the needs of the data intensive
applications which access, create, and move large amounts of
data over wide-area networks, due to problems such as:

1. Insufficient storage space when staging-in the input
data, generating the output, and staging-out the
generated data to a remote storage.

2. Trashing of storage server and subsequent timeout
due to too many concurrent read data transfers.

3. Storage server crashes due to too many concurrent
write data transfers.

4. Data transfers hanging indefinitely, i.e. loss of
acknowledgment during third party transfers.

5. Data corruption during data transfers due to faulty
hardware in the data stage and compute hosts.

6. Performance degradation due to unplanned data

Application Area Data Volume Users

VISTA [4] Astronomy 100 TB/year 100s
LIGO [5] Astrophysics 250 TB/year 100s
WCER EVP [6] Educational Technology 500 TB/year 100s
LSST [7] Astronomy 1000 TB/year 100s
BLAST [8] Bioinformatics 1000 TB/year 1000s
ATLAS [9] High Energy Physics 5000 TB/year 1000s
CMS [10] High Energy Physics 5000 TB/year 1000s

TABLE I

DATA REQUIREMENTS OF SCIENTIFIC APPLICATIONS

transfers.
7. Intermittent wide-area network outages.

All traditional batch schedulers are CPU-centric and are not
be able to handle the complications raised due to the need to
access to large amounts of remote data during computation. In
the next section, we will give a short history of the evolution
of the CPU- and data-centric schedulers.

II. BACKGROUND

I/O has been very important throughout the history of
computing, and special attention given to it to make it more
reliable and efficient both in hardware and software.

In the old days, the CPU was responsible for carrying out
all data transfers between I/O devices and the main memory
at the hardware level. The overhead of initiating, monitoring
and actually moving all data between the device and the
main memory was too high to permit efficient utilization
of CPU. To alleviate this problem, additional hardware was
provided in each device controller to permit data to be directly
transferred between the device and main memory, which led
to the concepts of DMA (Direct Memory Access) and I/O
processors (channels). All of the I/O related tasks are delegated
to the specialized I/O processors, which were responsible for
managing several I/O devices at the same time and supervising
the data transfers between each of these devices and main
memory [23].

On the operating systems level, initially the users had to
write all of the code necessary to access complicated I/O
devices. Later, low level I/O coding needed to implement basic
functions was consolidated to an I/O Control System (IOCS).
This greatly simplified users’ jobs and sped up the coding
process [24]. Afterwards, an I/O scheduler was developed on
top of IOCS that was responsible for execution of the policy
algorithms to allocate channel (I/O processor), control unit and
device access patterns in order to serve I/O requests from jobs
efficiently [25].

When we consider scheduling of I/O requests at the dis-
tributed systems level, we do not see the same recognition
given them. They are not considered as tasks that need to be
scheduled and monitored independently. I/O and computation
is closely coupled at this level, and I/O is simply regarded as
a side effect of computation. In many cases, I/O is handled
manually or using simple scripts which require baby-sitting
throughout the process. There are even cases where the data

is dumped to tapes and sent to the destination via postal
services [26].

In [27], we have introduced the concept that ”data place-
ment” activities in a distributed computing environment must
be first class citizens just like the computational jobs. In
that work, we have presented a framework in which data
placement activities are considered as full-edged jobs which
can be queued, scheduled, monitored, and even check-pointed.
We have introduced the first batch scheduler specialized in
data placement and data movement: Stork. This scheduler
implements techniques specific to queuing, scheduling, and
optimization of data placement jobs, and provides a level of
abstraction between the user applications and the underlying
data transfer and storage resources.

Later, Bent et. al. introduced a new distributed file system,
the Batch-Aware Distributed File System (BADFS) [28], and
a modified data-driven batch scheduling system [29]. Their
goal was to achieve data-driven batch scheduling by exporting
explicit control of storage decisions from the distributed file
system to the batch scheduler. Using some simple data-driven
scheduling techniques, they have demonstrated that the new
data-driven system can achieve orders of magnitude through-
put improvements both over current distributed file systems
such as AFS as well as over traditional CPU-centric batch
scheduling techniques which are using remote I/O.

We believe that these were only the initial steps taken
towards a new paradigm in data-intensive computing: the data-
aware batch schedulers. This trend will continue since the
batch schedulers are bound to take the data into consideration
when making scheduling decisions in order to handle the data-
intensive tasks correctly and efficiently.

III. A MOTIVATING EXAMPLE: BLAST

In this section, we provide a motivating example illustrating
how data placement is handled by scientific applications using
the traditional systems. This example is a well known bioin-
formatics application: Blast [8]. Blast aims to decode genetic
information and map genomes of different species including
humankind. Blast uses comparative analysis techniques while
doing this and searches for sequence similarities in protein and
DNA databases by comparing unknown genetic sequences (on
the order of billions) to the known ones.

Figure 2 shows the Blast process, the inputs it takes and the
output file it generates, as observed by the traditional CPU-
centric batch schedulers [30]. This is a very simplistic view of

Fig. 2. Blast Process (blastp)

what is actually happening in a real distributed environment
when we think about the end-to-end process. The diagram
in Figure 2 does not capture how the input data is actually
transferred to the execution site, and how the output data is
utilized.

If we consider the end-to-end process, we see how actually
the data is moved and processed by the Blast application in a
distributed environment, shown in Figure 3. Data movement
definitely complicates the end-to-end process. In Figure 3a,
we see the script used to fetch all the files required by the
Blast application, such as the executables, the gene database,
and the input sequences. After all of the files are transferred to
the execution site and preprocessed, a Directed Acyclic Graph
(DAG) is generated, where jobs are represented as nodes and
dependencies between jobs are represented as directed arcs.
This DAG, shown in Figure 3b, can have up to n Blast pro-
cesses (blastp) in it, all of which can be executed concurrently.
After completion of each blastp process i, a parser process i’
is executed which extracts the useful information from the
output files generated by blastp and reformats them. If these
two processes get executed on different nodes, the transfer
of the output file from the first node to the second one is
performed by the file transfer mechanism of the used batch
scheduling system. When all of the processes in the DAG
complete successfully, another script is executed, which is
shown in Figure 3c. This script double-checks the generated
output files for consistency and then transfers them back to
the home storage.

During Blast end-to-end processing, most of the data move-
ments are handled using some scripts before and after the
execution of the actual compute jobs. The remaining interme-
diate data movements between jobs are performed by the file
transfer mechanism of the batch scheduling system used for
computation. The compute jobs are scheduled by the batch
scheduler for execution. On the other side, the data transfer
scripts are run as “fork” jobs, generally at the head node,
which do not get scheduled at all. There are no concurrency
controls on the data transfers and no optimizations. Too many
concurrent transfers can overload network links, trash storage
servers, or even crash some of the source or destination nodes.
They can fill in all of the disk space available before even a
single transfer gets completed, since no space allocation is
performed, which in turn can cause the failure of all of the
jobs. More than one computational job on the same execution

host or on the same shared file system can ask for the same
files, and there can be many redundant transfers.

A message sent from one of the Blast site administrators to
the rest of the Blast users illustrates this very well:

“... I see a lot of gridftp processes on ouhep0, and
about 10 GB of new stuff in the $DATA area. That’s
taxing our NFS servers quite a bit (load averages of
up to 40), and you’re about to fill up $DATA, since
that’s only a 60 GB disk. Keep in mind that this is
a small test cluster with many really old machines.
So please don’t submit any jobs which need a lot
of resources, since you’re likely to crash those old
nodes, which has happened before...”

IV. DATA-AWARE SCHEDULING (CASE STUDY: STORK)

We have presented the fundamental features of our data
placement scheduler Stork in [27] and [31]. In this paper, we
will focus on the general data-aware scheduling techniques that
Stork employs to provide efficient scheduling of data-intensive
applications.

In order to be able to perform data-aware scheduling,
first the scheduler needs to understand the characteristics
and semantics of data placement tasks. For this purpose, we
differentiate between different types of data placement jobs.

A. Data Placement Job Types

We categorize data placement jobs into seven types. These
are:

transfer: This job type is for transferring a complete or
partial file from one physical location to another one. This
can include a get or put operation or a third party transfer.

allocate: This job type is used for allocating storage space
at the destination site, allocating network bandwidth, or estab-
lishing a light-path on the route from source to destination.
Basically, it deals with all necessary resource allocations pre-
required for the placement of the data.

release: This job type is used for releasing the correspond-
ing resource which is allocated before.

remove: This job is used for physically removing a file from
a remote or local storage server, tape or disk.

locate: Given a logical file name, this job consults a meta
data catalog service such as MCAT [32] or RLS [33] and
returns the physical location of the file.

register: This type is used to register the file name to a
meta data catalog service.

unregister: This job unregisters a file from a meta data
catalog service.

The reason that we categorize the data placement jobs into
different types is that all of these types can have different
priorities and different optimization mechanisms.

B. Efficient Resource Utilization

The data-aware batch scheduler (Stork) can control the
number of concurrent requests coming to any storage system it
has access to, and makes sure that neither that storage system
nor the network link to that storage system get overloaded.

Fig. 3. End-to-end Processing Performed by Blast

It can also perform space allocation and deallocations to
make sure that the required storage space is available on
the corresponding storage system. The space allocations are
supported by Stork as long as the corresponding storage
systems have support for it.

Figure 4 shows the effect of increased parallelism and
concurrency levels on the transfer rate. With the level of
parallelism, we refer to the number of parallel streams used
during the transfer of a single file; and with the level of
concurrency, we refer to the number of files being transferred
concurrently.

When the level parallelism and concurrency increases, the
transfer rate incurred in the wide area transfers increases as
expected. But for the local area transfers, the case is different.
We observe that increased parallelism and concurrency levels
help with increasing the transfer rate in local area transfers up
to a certain point, but after that, they have a negative impact
on the transfer rate. The transfer rate comes to a threshold,
and after this point the overhead of using multiple streams
and issuing multiple transfers starts causing a decrease in the
transfer rate.

These observations show us that increasing parallelism and
concurrency levels do not always increase the transfer rate. The
effect on the wide and local area can be different. Increased
concurrency has a more positive impact on the transfer rate
compared with increased parallelism.

Figure 5 shows the effect of increased parallelism and
concurrency levels on the CPU utilization. While the number
of parallel streams and the concurrency level increases, the
CPU utilization at the client side increases as expected. On the
server side, same thing happens as the level of concurrency
increases. But, we observe a completely opposite effect on
the server side as the level of parallelism increases. With the
increased parallelism level, the server CPU utilization starts

dropping and keeps this behavior as long as the parallelism
level is increased.

The most interesting observation here is that concurrency
and parallelism have completely opposite impacts on CPU
utilization at the server side. As stated by the developers of
GridFTP, a reason for this can be the amortization of the
select() system call overhead. The more parallel streams that
are monitored in a select() call, the more likely it will return
with ready le descriptors before GridFTP needs to do another
select() call. Also, as the more le descriptors that are ready,
the more time is spent actually reading or writing data before
the next select() call.

These results show that some of the assumptions we take
for granted may not always hold. We need a more complicated
mechanism to decide the correct concurrency or parallelism
level in order to achieve high transfer rate and low CPU
utilization at the same time.

C. Job Scheduling Techniques

We have applied some of the traditional job scheduling
techniques common in computational job scheduling to the
scheduling of data placement jobs:

First Come First Served (FCFS) Scheduling: Regardless
of the type of the data placement job and other criteria, the job
that has entered into the queue of the data placement scheduler
first is executed first. This technique, being the simplest one,
does not perform any optimizations at all.

Shortest Job First (SJF) Scheduling: The data placement
job which is expected to take least amount of time to complete
will be executed first. All data placement jobs except the
transfer jobs have job completion time in the order of seconds,
or minutes in the worst case. On the other hand, the execution
time for the transfer jobs can vary from couple of seconds to
couple of hours even days. Accepting this policy would mean

 20

 40

 60

 80

 100

 5 10 15 20 25 30

T
ra

ns
fe

r
R

at
e

(M
b/

s)

Level of Parallelism/Concurrency

Transfer Rate vs Parallelism/Concurrency
Wide Area

concurrent transfers
parallel streams

 20

 40

 60

 80

 100

 5 10 15 20 25 30

T
ra

ns
fe

r
R

at
e

(M
b/

s)

Level of Parallelism/Concurrency

Transfer Rate vs Parallelism/Concurrency
Local Area

concurrent transfers
parallel streams

Fig. 4. Controlling the Throughput

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

C
P

U
 U

til
iz

at
io

n
(%

)

Level of Parallelism/Concurrency

CPU Utilization vs Parallelism/Concurrency
Client

concurrent transfers
parallel streams

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

C
P

U
 U

til
iz

at
io

n
(%

)

Level of Parallelism/Concurrency

CPU Utilization vs Parallelism/Concurrency
Server

concurrent transfers
parallel streams

Fig. 5. Controlling the CPU Utilization

non-transfer jobs would be executed always before transfer
jobs. This may cause big delays in executing the actual transfer
jobs, which defeats the whole purpose of scheduling data
placement.

Multilevel Queue Priority Scheduling: In this case, each
type of data placement job is sent to separate queues. A
priority is assigned to each job queue, and the jobs in the
highest priority queue are executed first. To prevent starvation
of the low priority jobs, the traditional aging technique is
applied. The hardest problem here is determining the priorities
of each data placement job type.

Random Scheduling: A data placement job in the queue
is randomly picked and executed without considering any
criteria.

1) Auxiliary Scheduling of Data Transfer Jobs: The above
techniques are applied to all data placement jobs regardless of
the type. After this ordering, some job types require additional
scheduling for further optimization. One such type is the
data transfer jobs. The transfer jobs are the most resource
consuming ones. They consume much more storage space,
network bandwidth, and CPU cycles than any other data
placement job. If not planned well, they can fill up all storage
space, trash and even crash servers, or congest all of the
network links between the source and the destination.

Storage Space Management. One of the important re-
sources that need to be taken into consideration when making
scheduling decisions is the available storage space at the
destination. The ideal case would be the destination storage
system support space allocations, as in the case of NeST [34],
and before submitting a data transfer job, a space allocation
job is submitted in the workflow. This way, it is assured that
the destination storage system will have sufficient available
space for this transfer.

Unfortunately, not all storage systems support space alloca-
tions. For such systems, the data placement scheduler needs to
make the best effort in order not to over-commit the storage
space. This is performed by keeping track of the size of the
data transferred to, and removed from each storage system
which does not support space allocation. When ordering the
transfer requests to that particular storage system, the remain-
ing amount of available space, to the best of the scheduler’s
knowledge, is taken into consideration. This method does not
assure availability of storage space during the transfer of a file,
since there can be external effects, such as users which access
the same storage system via other interfaces without using
the data placement scheduler. In this case, the data placement
scheduler at least assures that it does not over-commit the
available storage space, and it will manage the space efficiently

Fig. 6. Storage Space Management: Different Techniques

if there are no external effects.
Figure 6 shows how the scheduler changes the order of the

previously scheduled jobs to meet the space requirements at
the destination storage system. In this example, four different
techniques are used to determine in which order to execute
the data transfer request without over-committing the available
storage space at the destination: first fit, largest fit, smallest fit,
and best fit.

First Fit: In this technique, if the next transfer job in
the queue is for data which will not fit in the available
space, it is skipped for that scheduling cycle and the next
available transfer job with data size less than or equal to
the available space is executed instead. It is important to
point that a complete reordering is not performed according
to the space requirements. The initial scheduling order is
preserved, but only requests which will not satisfy the storage
space requirements are skipped, since they would fail anyway
and also would prevent other jobs in the queue from being
executed.

Largest Fit and Smallest Fit: These techniques reorder all of
the transfer requests in the queue and then select and execute
the transfer request for the file with the largest, or the smallest,
file size. Both techniques have a higher complexity compared
with the first fit technique, although they do not guarantee
better utilization of the remote storage space.

Best Fit: This technique involves a greedy algorithm which
searches all possible combinations of the data transfer requests
in the queue and finds the combination which utilizes the re-
mote storage space best. Of course, it comes with a cost, which
is a very high complexity and long search time. Especially in
the cases where there are thousands of requests in the queue,
this technique would perform very poorly.

Fig. 7. Storage Space Management: Experiment Setup

Using a simple experiment setting, we will display how the
built-in storage management capability of the data placement
scheduler can help improving both overall performance and
reliability of the system. The setting of this experiment is
shown in Figure 7.

In this experiment, we want to process 40 gigabytes of data,
which consists of 60 files each between 500 megabytes and
1 gigabytes. First, the files need to be transferred from the
remote storage site to the staging site near the compute pool
where the processing will be done. Each file will be used as
an input to a separate process, which means there will be 60
computational jobs followed by the 60 transfers. The staging
site has only 10 gigabytes of storage capacity, which puts a
limitation on the number of files that can be transferred and
processed at any time.

A traditional scheduler would simply start all of the 60
transfers concurrently since it is not aware of the storage space

limitations at the destination. After a while, each file would
have around 150 megabytes transferred to the destination. But
suddenly, the storage space at the destination would get filled,
and all of the file transfers would fail. This would follow with
the failure of all of the computational jobs dependent on these
files.

On the other hand, Stork completes all transfers successfully
by smartly managing the storage space at the staging site.
At any time, no more than the available storage space is
committed, and as soon as the processing of a file is completed,
it is removed from the staging area to allow transfer of new
files. The number of transfer jobs running concurrently at any
time and the amount of storage space committed at the staging
area during the experiment are shown in Figure 8 on the left
side.

In a traditional batch scheduler system, the user could
intervene, and manually set some virtual limits to the level of
concurrency the scheduler can achieve during these transfers.
For example, a safe concurrency limit would be the total
amount of storage space available at the staging area divided
by the size of the largest file that is in the request queue.
This would assure the scheduler does not over-commit remote
storage. Any concurrency level higher than this would have
the risk of getting out of disk space anytime, and may cause
failure of at least some of the jobs. The performance of the
traditional scheduler with concurrency level set to 10 manually
by the user in the same experiment is shown in Figure 8 on
the right side.

Manually setting the concurrency level in a traditional batch
scheduling system has three main disadvantages. First, it is
not automatic, it requires user intervention and depends on
the decision made by the user. Second, the set concurrency
is constant and does not fully utilize the available storage
unless the sizes of all the files in the request queue are equal.
Finally, if the available storage increases or decreases during
the transfers, the traditional scheduler cannot re-adjust the
concurrency level in order to prevent overcommitment of the
decreased storage space or fully utilize the increased storage
space.

Storage Server Connection Management. Another im-
portant resource which needs to be managed carefully is the
number of concurrent connections made to specific storage
servers. Storage servers being thrashed or getting crashed due
to too many concurrent file transfer connections has been a
common problem in data intensive distributed computing.

In our framework, the data storage resources are considered
first class citizens just like the computational resources. Sim-
ilar to computational resources advertising themselves, their
attributes and their access policies, the data storage resources
advertise themselves, their attributes, and their access policies
as well. The advertisement sent by the storage resource
includes the number of maximum concurrent connections it
wants to take anytime. It can also include a detailed breakdown
of how many connections will be accepted from which client,
such as “maximum n GridFTP connections, and “maximum m
HTTP connections”.

This throttling is in addition to the global throttling per-
formed by the scheduler. The scheduler will not execute more
than lets say x amount of data placement requests at any time,
but it will also not send more than y requests to server a, and
more than z requests to server b, y+z being less than or equal
to x.

Other Scheduling Optimizations. In some cases, two
different jobs request the transfer of the same file to the same
destination. Obviously, all of these request except one are
redundant and wasting computational and network resources.
The data placement scheduler catches such requests in its
queue, performs only one of them, but returns success (or
failure depending on the return code) to all of such requests.
We want to highlight that the redundant jobs are not canceled
or simply removed from the queue. They still get honored and
the return value of the actual transfer is returned to them. But,
no redundant transfers are performed.

In some other cases, different requests are made to transfer
different parts of the same file to the same destination. These
type of requests are merged into one request, and only one
transfer command is issued. But again, all of the requests get
honored and the appropriate return value is returned to all of
them.

V. CONCLUSION

The insufficiency of the traditional distributed computing
systems and existing cpu-oriented batch schedulers in dealing
with the complex data handling problem has yielded a new
emerging era: the data-aware batch schedulers. One of the
first examples of such schedulers is the Stork data placement
scheduler. In this paper, we have discussed the limitations
of the traditional schedulers in handling the challenging data
scheduling problem of large scale distributed applications;
gave our vision for the new paradigm in data intensive
scheduling; and elaborated on our case study: the Stork data
placement scheduler.

We believe that Stork and its successors are only the
initial steps taken towards a new paradigm in data intensive
computing: the data-aware batch schedulers. This trend will
continue since the batch schedulers are bound to take the
data dependencies and data movement into consideration when
making scheduling decisions in order to handle the data-
intensive tasks correctly and efficiently.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, 1965.

[2] J. Gray and P. Shenoy, “Rules of thumb in data engineering,” in
Proceedings of the IEEE International Conference on Data Engineering,
San Diego, CA, February 2000.

[3] “NCBI: Growth of genbank,” http://www.ncbi.nlm.nih.gov/Genbank/
genbankstats.html.

[4] “The Visible and Infrared Survey Telescope for Astronomy,” http://www.
vista.ac.uk/.

[5] “Laser Interferometer Gravitational Wave Observatory,” http://www.
ligo.caltech.edu/.

 0
 10
 20
 30
 40
 50
 60

 0 10 20 30 40 50 60 70 80 90
 0
 10
 20
 30
 40

N
um

be
r

of
 jo

bs

S
to

ra
ge

 c
om

m
itt

ed
 (

G
B

)

Time (minutes)

Stork

running jobs
completed jobs

storage committed

 0
 10
 20
 30
 40
 50
 60

 0 10 20 30 40 50 60 70 80 90
 0
 10
 20
 30
 40

N
um

be
r

of
 jo

bs

S
to

ra
ge

 c
om

m
itt

ed
 (

G
B

)

Time (minutes)

Traditional Scheduler, n=10

running jobs
completed jobs

storage committed

Fig. 8. Storage Space Management: Stork vs Traditional Scheduler

[6] G. Kola, T. Kosar, and M. Livny, “A fully automated fault-tolerant
system for distributed video processing and off-site replication,” in
Proceedings of the 14th ACM International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV
2004), Kinsale, Ireland, June 2004.

[7] “The Large Synoptic Survey Telescope (LSST),” http://www.lsst.org/.
[8] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,

“Basic Local Alignment Search Tool,” Journal of Molecular Biology,
vol. 3, no. 215, pp. 403–410, October 1990.

[9] “A Toroidal LHC ApparatuS Project (ATLAS),” http://atlas.
web.cern.ch/.

[10] “The Compact Muon Solenoid Project (CMS),” http://cmsinfo.cern.ch/.
[11] L. Lamport and N. Lynch, “Distributed computing: Models and meth-

ods,” Handbook of Theoretical Computer Science, pp. 1158–1199,
Elsevier Science Publishers, 1990.

[12] T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-
purpose distributed computing systems,” IEEE Transactions on Software
Engineering, vol. 14, no. 2, pp. 141–154, February 1998.

[13] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A note on distributed
computing,” Sun Microsystems Laboratories, Tech. Rep. TR-94-29,
November 1994.

[14] E. Gabriel, M. Resch, T. Beisel, and R. Keller, “Distributed computing
in a heterogeneous computing environment,” Lecture Notes in Computer
Science, vol. 1497, p. 180, January 1998.

[15] R. Henderson and D. Tweten, “Portable Batch System: External refer-
ence specification,” 1996.

[16] “Using and administering IBM LoadLeveler,” IBM Corporation SC23-
3989, 1996.

[17] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor - A hunter of
idle workstations,” in Proceedings of the 8th International Conference
of Distributed Computing Systems, 1988, pp. 104–111.

[18] S. Zhou, “LSF: Load sharing in large-scale heterogeneous distributed
systems,” in Proc. of Workshop on Cluster Computing, 1992.

[19] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the Grid:
Enabling scalable virtual organizations,” International Journal of Su-
percomputing Applications, 2001.

[20] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and
K. Stockinger, “Data management in an international DataGrid project,”
in First IEEE/ACM Int’l Workshop on Grid Computing, Bangalore, India,
December 2000.

[21] “The Grid2003 production grid,” http://www.ivdgl.org/grid2003/.
[22] B. Sagal, “Grid Computing: The European DataGrid Project,” in IEEE

Nuclear Science Symposium and Medical Imaging Conference, Lyon,
France, October 2000.

[23] L. Bic and A. C. Shaw, “The Organization of Computer Systems,” in
The Logical Design of Operating Systems., Prentice Hall., 1974.

[24] H. M. Deitel, “I/O Control System,” in An Introduction to Operating
Systems., Addison-Wesley Longman Publishing Co., Inc., 1990.

[25] S. E. Madnick and J. J. Donovan, “I/O Scheduler,” in Operating
Systems., McGraw-Hill, Inc., 1974.

[26] W. Feng, “High performance transport protocols,” Los Alamos National
Laboratory, 2003.

[27] T. Kosar and M. Livny, “Stork: Making data placement a first class
citizen in the Grid,” in Proceedings of the 24th Int. Conference on
Distributed Computing Systems (ICDCS 2004), Tokyo, Japan, March
2004.

[28] J. Bent, D. Thain, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Explicit
control in a batch-aware distributed file system,” in Proceedings of
the First USENIX/ACM Conference on Networked Systems Design and
Implementation, March 2004.

[29] J. Bent, “Data-driven batch scheduling,” Ph.D. dissertation, University
of Wisconsin-Madison, 2005.

[30] D. Thain, J. Bent, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Pipeline
and batch sharing in grid workloads,” in Proceedings of the Twelfth IEEE
Symposium on High Performance Distributed Computing, June 2003.

[31] T. Kosar and M. Livny, “A framework for reliable and efficient data
placement in distributed computing systems,” Journal of Parallel and
Distributed Computing, 2005.

[32] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The SDSC Storage
Resource Broker,” in Proceedings of CASCON, Toronto, Canada, 1998.

[33] L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and
R. Schwartzkopf, “Performance and scalability of a Replica Location
Service,” in Proceedings of the International Symposium on High
Performance Distributed Computing Conference (HPDC-13), Honolulu,
Hawaii, June 2004.

[34] “NeST: Network Storage Technology,” http://www.cs.wisc.edu/condor/
nest/.

