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Abstract 

In this paper, we examine the issues of workflow mapping and execution in opportunistic 
environments such as the grid. As applications become ever more complex, the process 
of choosing the appropriate resources and successfully executing the application 
components becomes ever more difficult. In this paper, we focus on the interplay 
between a workflow mapping component that plans the high-level resource assignments 
and the workflow executor that oversees the component execution. We concentrate 
particularly on issues of data management and we draw from the experiences with 
mapping and execution systems: Pegasus, DAGMan and Stork. 
 

1 Introduction 
Many scientific applications today are being developed as complex workflows, where the 
workflow steps represent individual application components and the dependencies in the 
workflow impose precedence on the application component execution. Workflows enable 
scientists to systematically express complex analysis, reason about the overall application 
and to provide provenance information adequate for the interpretation of the derived 
results. As the complexity of the applications grows, so does the need to use a significant 
number of resources to support their execution. It is often the case, that no single group of 
collaborators has all the computational resources in their possession and may form larger 
collaborations to draw upon a larger set of common resources. These resources are no 
longer dedicated to one application or one user group; rather they can be 
opportunistically used by multiple groups when available. Recently many domain 
scientists in high-energy physics [CMS][ATLAS], gravitational-wave physics [LIGO] 
and astronomy [SDSS][DPOSS] have been turning towards opportunistic environments 



such as the grid to enable day-to-day large-scale data analysis. However, such 
environments pose a significant challenge: resources are shared among many users, 
policies governing their use may change over time, hardware and software failures may 
occur. When applications are complex, being able to bring an application to a successful 
completion is difficult. It is nearly impossible for a user to map and then manage the 
execution of the application by hand. Users often rely on various middleware services to 
perform many of the functions. Some can map a workflow-based application onto 
available resources and some can make sure that the resulting instantiated workflow 
components are executed in a prescribed order. The complexity arises when faults occur 
in the system, and the middleware components need anticipate and/or recover from them. 
Dealing with failures may often involve more than one middleware services. In this 
paper, we focus on a particular problem of the interplay between decision-making and 
execution services: the planner and the manager. We draw from our experiences with the 
Pegasus planner [Deelman 03, Deelman 03b, Deelman 04] and a manager that consists of 
DAGMan [DAGMan], Condor-G [Frey 01] and Stork [Kosar 04] will be used to discuss 
the limitation of current tools and describe possible ways to enhance the interaction 
between these software tools. 
 

2 Background 
Much of our experience stems from our work within the NSF-funded Grid Physics 
Network (GriPhyN) project [Griphyn]. GriPhyN focuses on supporting a variety of large-
scale applications such as CMS [CMS] and Atlas [Atlas] (high-energy physics), SDSS 
[SDSS] (astronomy) and LIGO [LIGO] (gravitational-wave physics). At the heart of 
GriPhyN is the idea of virtual data where data can exist in a materialized form (accessible 
from some storage system) or can exist in a form of a recipe (or workflow). When a user 
request a data set, the system (composed of several services) evaluates the request and 
generates an abstract workflow, performs the necessary resource assignment and executes 
the request. 
 
As part of GriPhyN, several middleware services have been developed that can take a 
high-level partial workflow description, map it to a concrete form and execute on the 
grid. In particular, the Chimera system takes a Virtual Data Language (VDL) provided by 
the user and constructs an abstract workflow. The abstract workflow details the 
application components and their input and output data at an abstract level—without 
specifying the resources that will be used in the execution or the specific location of the 



data. Pegasus takes that abstract description, queries a variety of grid information services 
and makes decisions about where to execute the application components and where to 
access the data. Pegasus may also decide to reduce the abstract workflow if intermediate 
data products are already available. In order to stage data in and out of the application 
components, Pegasus augments the workflow with data movement. The resulting 
concrete workflow is then given to a workflow execution system (or workload manager) 
such as DAGMan. The workload manager interacts with a variety of resource managers 
that control the allocation of these physical resources. For simplicity, we also assume that 
the workflows are structured as directed acyclic graphs (DAGs). A directed graph 
manager takes the workflows, orders the jobs according to their dependencies, and 
submits the jobs ready for execution to the corresponding batch schedulers. Different 
batch schedulers can be used according to the requirements or characteristics of the jobs 
in the workflow. In our framework, we use two specialized batch schedulers: one for 
computation (DAGMan) and one for data placement (Stork). 
 

3 Workflow Mapping and Execution 
Figure 1 gives an overview of the workflow mapping and execution components. The 
main interaction between the planner and the manager is a concrete DAG. In this DAG, 
jobs are represented as nodes and the dependencies between jobs are represented as 
directed arcs between the respective nodes. To perform the management of the DAGs, we 
employ the Directed Acyclic Graph Manager (DAGMan) which is a service for executing 
multiple jobs with dependencies between them. DAGMan accepts a declaration that 
specifies the jobs to be executed and the order of their execution. It logs the execution of 
the DAG to persistent storage, allowing it to resume a DAG where it left off, even in the 
face of crashes and other failures.  
 
The Condor [Litzkow 88] workload scheduling system is a scheduler for computational 
jobs. Condor provides a job queuing mechanism and resource monitoring capabilities. It 
allows the users to specify scheduling policies and enforce priorities. Condor has an 
extension called Condor-G, which allows users to submit their jobs to inter-domain 
resources by using the Globus Toolkit [Foster 99] functionality. In this way, user jobs can 
be scheduled and run not only on Condor resources but also on PBS [Henderson 96], LSF 
[Zhou 92], LoadLeveler [IBM 96], and other grid resources. 
 
We have used Stork as the scheduler for data transfer jobs. Stork is a specialized 



scheduler for data placement activities in heterogeneous environments. Data placement 
comprises all data movement related activities such as transfer, staging, replication, space 
allocation and de-allocation. Stork can queue, schedule, monitor, and manage data 
placement jobs and ensure that the jobs complete. 

 
Figure 1: Overall view of workflow management components. 



4 Data Management issues 
Data-intensive applications in distributed computing systems may require moving the 
input data for the job from a remote site to the execution site, executing the job, and then 
moving the output data from execution site to the same or another remote site. These data 
movement decisions are made in our system by Pegasus. In order to avoid the risk of 
running out of disk space at the execution site, Pegasus may also allocate space before 
transferring the input data there, and release the space after it moves out the output data 
from there. We regard all of these computational and data placement steps as real jobs 
and represent them as nodes in a DAG as shown in Figure 2. 
 

 
Figure 2: Separation of data placement from computation. 

 
Data placement jobs are represented in a different way than computational jobs in the job 
specification language, so that the high-level planners can differentiate these two classes 
of jobs. Then, the planner submits computational jobs to a compute job queue, and the 



data placement jobs to a data placement job queue. Jobs in each queue get scheduled by 
the corresponding scheduler. 
 
Since our focus in this work is on the data placement part, we do not get into details of 
the computational job scheduling. The data placement scheduler can understand the 
characteristics of the data placement jobs and can make smart scheduling decisions 
accordingly. Computational job schedulers do not understand the semantics of data 
transfers well.  
 
For example, if the transfer of a large file fails, we do not want simply restart the job and 
re-transfer the whole file. Rather, we may prefer to transfer only the remaining part of the 
file. Similarly, if a transfer using one protocol fails, we may want to try other protocols 
supported by the source and destination hosts to perform the transfer. We also may want 
the scheduler to choose and apply the network tuning parameters such as I/O block size, 
TCP buffer size and number of parallel streams, which best fits to the selected data 
transfer protocol. A traditional computational job scheduler does not handle these cases. 
For this purpose, we differentiate the data placement jobs from computational jobs. 
 
The data placement component schedules the jobs in its queue according to the 
information it gets from the high-level planner and from the resource broker/policy 
enforcer (matchmaker). The resource broker matches resources to jobs, and helps in 
locating the data and making decisions such as where to move the data. The policy 
enforcer helps in applying the resource specific or job specific policies, such as how 
many concurrent connections are allowed to a specific storage server. 
 
The transfer history data collected from the job log files and the network statistics from 
the network monitoring tools are fed back to the scheduler and the high-level planner. 
The job description can be changed according to this feedback as well whenever it is 
necessary.  



5 Limitations of the current approach 
When failures in the environment are infrequent, the workflow can be simply passed 
from the planning component to the execution component. However, in the face of 
potentially many failures, the simple delegation scenario may not be sufficient. Failure 
handling for computational jobs is fairly straightforward if they do not have any data 
dependencies. The most common failure handling mechanism for these types of jobs is 
simply rescheduling to another computational resource and retrying. If the jobs are 
dependent on the existence or the transfer of some data, in other words data placement, 
more complicated failure recovery mechanisms need to be employed depending on the 
failure reason.  
 
If the reason of failure for the computational job is some missing input data, the earlier 
jobs in the workflow which were responsible of creating and transferring the necessary 
input data for this particular jobs may need to be re-executed as well. This can involve 
either the planner or the workflow manager. The workflow manager can simply do a 
rollback in the workflow, and then repeat some of the already successfully completed 
jobs to meet the failed job’s requirements. Sometimes, even a rollback may not be 
sufficient. The planner may need to be involved and it may need to change the workflow 
or reconsider site and replica selection if necessary.  
 
If the job fails due to insufficient disk space, either it should be assigned to another 
resource with sufficient disk space, or space reservations should be made to ensure that 
adequate disk space remains during a file transfer or during creation of output data by a 
computational job.  
 
All of these actions require coordination between the planner, workflow manager and the 
corresponding batch schedulers. Such interactions are currently not available in today’s 
GriPhyN systems. 
 



6 Interactions between Workflow Planning and 
Execution     

In this section, we abstract away from the details of the systems we presented so far and 
focus on the interactions that are necessary between workflow planning and execution 
components. As we already mentioned, in order for the abstract workflow to be executed 
on opportunistic distributed resources, such as for example resources provided by a Grid, 
a mapping from the abstract workflow specification to actual resources has to be 
performed throughout the execution of the workflow. In general, the mapping can be 
viewed as an iterative process. The planner devises a plan and delegates it to the manager 
for execution. Given the evolution of the execution of the plan, it may be necessary to 
adjust the mapping decisions. The level of specification of the plan may vary depending 
on the capabilities of the planner and the manager. In general, because of the highly 
dynamic aspects of the underlying execution environment, it may be beneficial to 
postpone the binding of a task to a physical resource until the very last moment.   
 

6.1 Planning decision points 
Not all decisions can be postponed to the end. The manager needs to have a general idea 
of the work that needs to be managed. The planner needs to construct a high-level plan 
for the entire workflow ahead of time and provide the manager with a general structure of 
the workflow. The planner may augment the initial abstract workflow with additional 
activities that may be necessary for the actual execution, such as resource allocation and 
de-allocation, stage-in and stage-out, and clean up after the job is finished, as shown in 
figure 3. The planner may also reduce the workflow by removing activities whose result 
is already available. For example, if several jobs requiring the same input file get 
assigned to the same execution site, some of the steps for storage allocation and data 
transfers can be merged as shown in figure 4. The initial workflow adaptation may also 
depend upon the current state of the execution environment. The final decision of 
allocation of a particular activity may occur at three distinct points in time.  
 
Workflow Delegation Time: Decisions can be made at the time that the execution of the 
workflow is delegated to the manager (eager planning). In eager planning, the planner 
makes the decision given the state of the resources at the time just prior to the delegation.  
 
Activity Scheduling Time: Although the manager is provided with the structure of the 



workflow at delegation time, the decision of resource assignment is made when a 
particular activity or activity set is ready to be released into the system (in particular 
when all the parents of the activities are successfully completed).  In this mode, that we 
term deferred planning, the information used during the mapping reflects the state of the 
execution system at the time that an activity can be released to the execution 
environment.  
 
Resource Availability Time: It is possible that at the time an activity is ready to execute, 
there are no resources available to execute that activity or that it is difficult to determine 
the “best” resources at that time. Just-in-time planning allows decisions to be made when 
resources needed to execute the activity become available.  
 

 
Figure 3: Extending the DAG according to the requirements of the job. 

 
Although, in general it may be advantageous to schedule as late as possible, it may 
sometimes be also detrimental. For example, if a computation requires a large input data 
set, it can be beneficial to pre-stage the data to a particular resource and then execute 
there. That approach is better than picking an available computation resource as it 
becomes available and then stage the data in. 
 
Also, the entire workflow may not need to be treated uniformly. It is possible that some 



planning can and needs to be done ahead of time, for example if the workflow can use 
resources that support reservation, or when we are dealing with a reasonably stable 
execution environment, for example a Grid that has been dedicated for a particular time, 
where resource contention is low. In the case that reservations are not available, but we 
are dealing with rare resources, such instruments or environments composed of queuing-
based resources (for example the TeraGrid) it may be advantageous to use the deferred 
approach. Just-in-time planning may be beneficial in a highly dynamic environment 
where resources can suddenly become available or go away and where resource 
contention is high.  
 

 
Figure 4: Reduction of unnecessary nodes in the DAG. 

 
As one can imagine, a particular workflow can benefit from a variety of scheduling 



paradigms, reserving resources ahead of time where possible, submitting jobs into queues 
of high-performance resources, hoping that resources become available and taking 
advantage of them. The interactions between the planner and manager need to support 
that type of flexible resource assignment.  Additional complexity arises from the fact that 
resources may suddenly disappear. In that case previously made decisions may need to be 
revisited. We touch upon some of these issues in the  Section 6.3.  
 

6.2 Decision Specification Level 
The level of specification that the planner gives to the manager is dependent on the 
capabilities of each of these components. On one end of the spectrum, the planner may be 
able to structure the workflow but then push all the decision making to the manager. This 
requires a manager that is capable of making decisions (good or bad).  On the other end 
of the spectrum, we can have a manager with no decision-making capabilities where we 
need to rely on the planner to make all the decisions. In practice, the capabilities of the 
planners and managers may be somewhere in between, enabling a certain level of 
sophistication in the decision making process by both components. 
 
Notice that the capabilities of the planner and manager do not necessarily dictate any 
particular decision points rather they dictate the level of specification that the planner 
gives to the manager. For example, we can imagine a very sophisticated planner. Let us 
assume that we plan eagerly. If the planner has at its disposal a simple manager, it will 
need to tell that manager exactly what resources to use at each step of the workflow. 
However, if the manager is more sophisticated, rather than receiving directives from the 
planner, it can receive “guidance” in the form of preferred resources, policies to use when 
making resource assignments, etc. The final, deferred, or just-in-time decision can be left 
to the manager.  
 
Having a simple manager does not imply that the decision cannot be made in the deferred 
mode. The directives coming from the planner can instruct the manager to call back to the 
planner at the time when that activity is ready to be released into the execution system.  
The just-in-time mode is a bit more complex, because it relies on the capability of the 
manager to recognize the opportunities presented by the environment (new resources 
suddenly becoming available).  
 



6.3 Reacting to the Changing Environment and Recovering from 
Failures 

Interactions between the planner and the manager are not solely geared towards 
delegating work from the planner to the manager. In a reliable and static environment, the 
initial plan (at any level of specificity) can be given for execution by the manager. 
However, distributed environments, especially the Grid, are very dynamic and prone to 
failure. One cannot rely solely on the manager or the execution environment to handle 
failures and to adapt to changing resource loads. Although the manager may try to 
recover from failures by methods such as retry, it may ultimately fail to execute the 
specified task.  It is thus necessary for the workflow manager to communicate the failure, 
as well as success to the planner. We term this process as “flow back” denoting the flow 
back of the information from the manager to the planner. Based on the information 
provided by the manager, the planner can decide how to proceed, whether to reschedule a 
particular activity and possibly its dependents.  
 
Again, the level of sophistication of the planner and manager play an important role. It 
determines how much recovery is placed within the responsibility of the components. If 
the manager is sophisticated, it can possibly try to schedule to a different set of resources 
(based on its own knowledge or based on the planner directives). If the manager is not 
that sophisticated or has tried all that it could, it may want to communicate the failures 
back to the planner. However, if the planner is not very sophisticated, it may not attempt 
recovery procedures beyond those used by the manager. In any case, the planner is 
ultimately responsible for the end-to-end execution of the workflow and needs to 
communicate with higher-level systems (maybe a user).  
 
The planner may be able to come up with a different set of directives, possibly even re-
computing parts of the workflow that were not exposed to the manager. For example, the 
planner may have reduced the abstract workflow based on the assumption that particular 
data products were available in the environment. If for example, these products are 
suddenly not available, either through resource failure or through user interaction 
(deleting a file); the planner may augment the workflow and include the generation of the 
necessary data. In general, in case of failures, the planner may want to re-plan the 
mapping of the workflow. 
 



7 Related work 
There have been a number of efforts within the Grid community to develop general-
purpose workflow management solutions.   

WebFlow [Fox 98] is a multileveled system for high performance distributed 
computing. It consists of three layers. The top layer consists of a web based tool for 
visual programming and monitoring. It provides the user the ability to compose new 
applications with existing components using a drag and drop capability. The middle layer 
consists of distributed web flow server implemented using java extensions to httpd 
servers. The lower layer uses the Java CoG Kit to interface with the Grid [Laszewski 01] 
for high performance computing. Webflow uses GRAM as the interface between 
Webflow and the Globus Toolkit. Thus, Webflow also provides a visual programming aid 
for the Globus toolkit. 

GridFlow [Cao 03] has a two-tiered architecture with global Grid workflow 
management and local Grid sub workflow scheduling. GridAnt [gridant] uses the Ant 
[ant] workflow processing engine. Nimrod-G [Buyya 00] is a cost and deadline based 
resource management and scheduling system. The Accelerated Strategic Computing 
Initiative Grid [Beiriger 00] distributed resource manager includes a desktop submission 
tool, a workflow manager and a resource broker. In the ASCI Grid software components 
are registered so that the user can ask "run code X" and the system finds out an 
appropriate resource to run the code. Pegasus uses a similar concept of virtual data where 
the user can ask "get Y" where Y is a data product and the system figures out how to 
compute Y. Almost all the systems mentioned above except GridFlow use the Globus 
Toolkit [Foster 99] for resource discovery and job submission. The GridFlow project will 
apply the OGSA [ogsa] standards and protocols when their system becomes more mature.  
Both ASCI Grid and Nimrod-G uses the Globus MDS [Fitzgerald 97] service for 
resource discovery and a similar interface is being developed for Pegasus. GridAnt, 
Nimrod-G and Pegasus use GRAM [Czajkowski 98] for remote job submission and GSI 
[Welch 03] for authentication purposes. GridAnt has predefined tasks for authentication, 
file transfer and job execution, while reusing the XML-based workflow specification 
implicitly included in ant, which also makes it possible to describe parallel and sequential 
executions. 

The main difference between Pegasus and the above systems is that while most of 
the above system focus on resource brokerage and scheduling strategies Pegasus uses the 
concept of virtual data and provenance to generate and reduce the workflow based on 
data products, which have already been computed earlier. It prunes the workflow based 



on the assumption that it is always more costly the compute the data product than to fetch 
it from an existing location. Pegasus also automates the job of replica selection so that the 
user does not have to specify the location of the input data files. Pegasus can also map 
and schedule only portions of the workflow at a time, using just in-time planning 
techniques. 

BAD-FS [Bent 04] builds a batch aware distributed filesystem for data intensive 
workloads. This is general purpose and serves workloads more data intensive than 
conventional ones. For performance reasons it prefer to access source data from local 
disk rather than over a network filesystem. Further, BAD-FS at present does not schedule 
wide-area data movement which we feel is necessary for large data sets. BAD-FS can 
interact with our system for more reliable and efficient wide area transfers.  

Pasquale et al [Pasquale 94] present a framework for operating systems level I/O 
pipelines for efficiently transferring very large volumes of data between multiple 
processes and I/O devices. This work is at very low level and does not apply to 
distributed systems. 

Application Level Schedulers (AppLeS) [Berman 96] have been developed to 
achieve efficient scheduling by taking into account both application-specific and dynamic 
system information. AppLeS agents use dynamic system information provided by the 
NWS [Wolski 97]. 

Beck et. al. introduce Logistical Networking [Beck 00] which performs global 
scheduling and optimization of data movement, storage and computation based on a 
model that takes into account all the network's underlying physical resources. This 
approach only focuses only on the data movement and does not perform any coordination 
of CPU and data. 

Thain et. al. propose the Ethernet approach [Thain 03] to distributed computing, in 
which they introduce a simple scripting language which can handle failures in a manner 
similar to exceptions in some languages. The Ethernet approach is not aware of the 
semantics of the jobs it is running; its duty is retrying any given job for a number of times 
in a fault tolerant manner 

 

8 Conclusions  
In summary, the process of mapping workflows in distributed, opportunistic 
environments requires a dynamic multi-stage approach. There is a need to have a 
mapping component that can make decisions on the global scale—the scale of the entire 
workflow and a component that can react and adapt to the changing environment. These 



components cannot be independent of one another, rather they need to be closely 
coordinated. In this paper we use our recent experience in managing real-life workflows 
on Grid resources [Griphyn] to identify challenges and discuss possible approaches to 
address them. The ideas presented in this paper will be used by the authors and their 
teams to enhance the functionality of their respective software tools.  
 
References: 
[ATLAS] CERN, “A Toroidal LHC ApparatuS Project”, http://atlas.web.cern.ch/Atlas. 
[Beck 00] M. Beck, T. Moore, J. Plank and M. Swany, “Logistical Networking”, Active 

Middleware Services, S. Hariri, C. Lee and C. Raghavendra, editors, Kluwer 
Academic Publishers, 2000. 

[Bent 04] J. Bent, D. Thain, A. Arpaci-Dusseau and R. Arpaci-Dusseau, “Explicit 
Control in a Batch-Aware Distributed File System”, In the Proceedings of the First 
USENIX/ACM Conference on Networked Systems Design and Implementation (NSDI 
2004), March, 2004. 

[Beiriger 00] Beiriger, J., Johnson, W., Bivens, H., Humphreys, S. and Rhea, R., 
Constructing the ASCI Grid. In Proc. 9th IEEE Symposium on High Performance 
Distributed Computing, 2000, pp. 193-200. IEEE Press. 

[Berman 96] F. Berman, R. Wolski, S. Figueira, J. Schopf and G. Shao, “Application 
Level Scheduling on Distributed Heterogeneous Networks”, In Proceedings of 
Supercomputing'96, Pittsburgh, PA, November 1996. 

[Buyya 00]  Buyya, R., Abramson, D. and Giddy, J. "Nimrod/G: An Architecture of a 
Resource Management and Scheduling System in a Global Computational Grid", 
HPC Asia 2000, May 14-17, 2000, pp 283 - 289, Beijing, China. 

[Cao 03] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. GridFlow: WorkFlow 
Management for Grid Computing. In Proceedings of the 3rd IEEE/ACM 
International Symposium on Cluster Computing and the Grid (CCGRID'03), pp. 
198-205, 2003. 

[Czajkowski 98] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. 
Smith, S. Tuecke. A Resource Management Architecture for Metacomputing 
Systems. Proc. IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel 
Processing, pg. 62-82, 1998. 

[CMS] CERN, “The Compact Muon Solenoid Project”, http://cmsinfo.cern.ch. 
[DAGMan] Condor Team. “The directed acyclic graph manager (DAGMan)”, 

http://www.cs.wisc.edu/condor/dagman, 2002 
[Deelman 03] E. Deelman, J. Blythe, et al., "Mapping Abstract Complex Workflows onto 



Grid Environments," Journal of Grid Computing, vol 1, nr 1, pages 25-29, 2003. 
[Deelman 03b] E. Deelman, J. Blythe, Y. Gil, Carl Kesselman  "Workflow Management 

in GriPhyN", Chapter in "The Grid Resource Management", 2003. 
[Deelman 04] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. Su, K. 

Vahi, “Pegasus: Mapping Scientific Workflows onto the Grid”, To appear in the 
Proceedings of across Grid EU Conference, 2004. 

[DPOSS] S. G. Djorgovski, R. R. Gal, S. C. Odewahn, R. R. de Carvalho, R. Brunner, G. 
Longo and R. Scaramella, “The Palomar Digital Sky Survey (DPOSS)”, Wide Field 
Surveys in Cosmology, 1988. 

[Fitzgerald 97] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S. 
Tuecke. A Directory Service for Configuring High-Performance Distributed 
Computations. Proc. 6th IEEE Symposium on High-Performance Distributed 
Computing, pp. 365-375, 1997. 

[Foster 99] I. Foster and C. Kesselmann, “Globus: A Toolkit-Based Grid Architecture”, 
The Grid: Blueprints for a new Computing Infrastructure, pages 259-278, Morgan 
Kaufmann, 1999.  

[Fox 98] http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Akarsu809 
[Frey 01] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, "Condor-G: 

AComputation Management Agent for Multi-Institutional Grids.," Cluster 
Computing, vol. 5, pp. 237-246, 2002. 

[gridant]  http://www-unix.globus.org/cog/projects/gridant 
[Griphyn] Griphyn, “Grid Physics Network”, http://www.griphyn.org 
[Henderson 96] R. Henderson and D. Tweten, “Portable Batch System: External 

Reference Specification”, 1996. 
[IBM 96] IBM, “Using and Administering IBM Load Leveler”, IBM Corporation SC23-

3989, 1996. 
[Kosar 04] T. Kosar and Miron Livny, “Stork: Making Data Placement a First Class 

Citizen in the Grid”, In the Proceedings of 24th IEEE International Conference on 
Distributed Computing Systems (ICDCS 2004), Tokyo, Japan, March 2004. 

[Laszewski 01] von Laszewski, G. I. Foster, J. Gawor, P. Lane, “A Java Commodity Grid 
Kit,” Concurrency and Computation: Practice and Experience, pages 643-662, 
Volume 13, Issue 8-9, 2001. 

[LIGO] Caltech, “Laser Interferometer Gravitational Wave Observatory”, 
http://www.ligo.caltech.edu. 

[Litzkow 88] M. J. Litzkow, M. Livny and M. W. Mutka, “Condor – A Hunter of Idle 
Workstations”, In Proceedings of the 8th Int. Conf. of Distributed Computing Systems, 



pages 104-111, 1988. 
[ogsa] www.globus.org/ogsa 
[Pasquale 94] J. Pasquale and E. Anderson, “Container Shipping: Operating System 

support for {I/O} Intensive Applications”, IEEE Computer, 1994. 
[SDSS] FNAL, “Sloan Digital Sky Survey”, http://tdpc01.fnal.gov/sdss/project.htm. 
[Thain 03] D. Thain and M. Livny, “The Ethernet Approach to Grid Computing”, In 

Proceedings of the Twelfth IEEE Symposium on High Performance Distributed 
Computing (HPDC-12), Seattle, WA, June 2003. 

[Welch 03] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Cajkowski, J. Gawor, C. 
Kesselman, S. Meder, L. Pearlman, S. Tuecke. Security for Grid Services. Twelfth 
International Symposium on High Performance Distributed Computing (HPDC-12), 
pp. 48 -57, June 2003, IEEE Press. 

[Wolski 97] R. Wolski, “Dynamically Forecasting Network Performance to Support 
Dynamic Scheduling Using the  Network Weather Service”, In Proceedings of the 
Sixth IEEE Symposium on High Performance Distributed Computing (HPDC6), 
Portland, OR, August 1997. 

[Zhou 92] S. Zhou, “LSF: Load Sharing in Large-Scale Heterogeneous Distributed 
Systems”, In Proceedings of Workshop on Cluster Computing, 1992. 

 


