
What makes workflows work in an opportunistic
environment?

Ewa Deelman1 Tevfik Kosar2 Carl Kesselman1 Miron Livny2
1USC Information Science Institute, Marina Del Rey, CA

deelman@isi.edu, carl@isi.edu

 2Computer Sciences Department, University of Wisconsin, Madison, WI

kosart@cs.wisc.edu, miron@cs.wisc.edu

Abstract

In this paper, we examine the issues of workflow mapping and execution in opportunistic
environments such as the grid. As applications become ever more complex, the process
of choosing the appropriate resources and successfully executing the application
components becomes ever more difficult. In this paper, we focus on the interplay
between a workflow mapping component that plans the high-level resource assignments
and the workflow executor that oversees the component execution. We concentrate
particularly on issues of data management and we draw from the experiences with
mapping and execution systems: Pegasus, DAGMan and Stork.

1 Introduction
Many scientific applications today are being developed as complex workflows, where the
workflow steps represent individual application components and the dependencies in the
workflow impose precedence on the application component execution. Workflows enable
scientists to systematically express complex analysis, reason about the overall application
and to provide provenance information adequate for the interpretation of the derived
results. As the complexity of the applications grows, so does the need to use a significant
number of resources to support their execution. It is often the case, that no single group of
collaborators has all the computational resources in their possession and may form larger
collaborations to draw upon a larger set of common resources. These resources are no
longer dedicated to one application or one user group; rather they can be
opportunistically used by multiple groups when available. Recently many domain
scientists in high-energy physics [CMS][ATLAS], gravitational-wave physics [LIGO]
and astronomy [SDSS][DPOSS] have been turning towards opportunistic environments

such as the grid to enable day-to-day large-scale data analysis. However, such
environments pose a significant challenge: resources are shared among many users,
policies governing their use may change over time, hardware and software failures may
occur. When applications are complex, being able to bring an application to a successful
completion is difficult. It is nearly impossible for a user to map and then manage the
execution of the application by hand. Users often rely on various middleware services to
perform many of the functions. Some can map a workflow-based application onto
available resources and some can make sure that the resulting instantiated workflow
components are executed in a prescribed order. The complexity arises when faults occur
in the system, and the middleware components need anticipate and/or recover from them.
Dealing with failures may often involve more than one middleware services. In this
paper, we focus on a particular problem of the interplay between decision-making and
execution services: the planner and the manager. We draw from our experiences with the
Pegasus planner [Deelman 03, Deelman 03b, Deelman 04] and a manager that consists of
DAGMan [DAGMan], Condor-G [Frey 01] and Stork [Kosar 04] will be used to discuss
the limitation of current tools and describe possible ways to enhance the interaction
between these software tools.

2 Background
Much of our experience stems from our work within the NSF-funded Grid Physics
Network (GriPhyN) project [Griphyn]. GriPhyN focuses on supporting a variety of large-
scale applications such as CMS [CMS] and Atlas [Atlas] (high-energy physics), SDSS
[SDSS] (astronomy) and LIGO [LIGO] (gravitational-wave physics). At the heart of
GriPhyN is the idea of virtual data where data can exist in a materialized form (accessible
from some storage system) or can exist in a form of a recipe (or workflow). When a user
request a data set, the system (composed of several services) evaluates the request and
generates an abstract workflow, performs the necessary resource assignment and executes
the request.

As part of GriPhyN, several middleware services have been developed that can take a
high-level partial workflow description, map it to a concrete form and execute on the
grid. In particular, the Chimera system takes a Virtual Data Language (VDL) provided by
the user and constructs an abstract workflow. The abstract workflow details the
application components and their input and output data at an abstract level—without
specifying the resources that will be used in the execution or the specific location of the

data. Pegasus takes that abstract description, queries a variety of grid information services
and makes decisions about where to execute the application components and where to
access the data. Pegasus may also decide to reduce the abstract workflow if intermediate
data products are already available. In order to stage data in and out of the application
components, Pegasus augments the workflow with data movement. The resulting
concrete workflow is then given to a workflow execution system (or workload manager)
such as DAGMan. The workload manager interacts with a variety of resource managers
that control the allocation of these physical resources. For simplicity, we also assume that
the workflows are structured as directed acyclic graphs (DAGs). A directed graph
manager takes the workflows, orders the jobs according to their dependencies, and
submits the jobs ready for execution to the corresponding batch schedulers. Different
batch schedulers can be used according to the requirements or characteristics of the jobs
in the workflow. In our framework, we use two specialized batch schedulers: one for
computation (DAGMan) and one for data placement (Stork).

3 Workflow Mapping and Execution
Figure 1 gives an overview of the workflow mapping and execution components. The
main interaction between the planner and the manager is a concrete DAG. In this DAG,
jobs are represented as nodes and the dependencies between jobs are represented as
directed arcs between the respective nodes. To perform the management of the DAGs, we
employ the Directed Acyclic Graph Manager (DAGMan) which is a service for executing
multiple jobs with dependencies between them. DAGMan accepts a declaration that
specifies the jobs to be executed and the order of their execution. It logs the execution of
the DAG to persistent storage, allowing it to resume a DAG where it left off, even in the
face of crashes and other failures.

The Condor [Litzkow 88] workload scheduling system is a scheduler for computational
jobs. Condor provides a job queuing mechanism and resource monitoring capabilities. It
allows the users to specify scheduling policies and enforce priorities. Condor has an
extension called Condor-G, which allows users to submit their jobs to inter-domain
resources by using the Globus Toolkit [Foster 99] functionality. In this way, user jobs can
be scheduled and run not only on Condor resources but also on PBS [Henderson 96], LSF
[Zhou 92], LoadLeveler [IBM 96], and other grid resources.

We have used Stork as the scheduler for data transfer jobs. Stork is a specialized

scheduler for data placement activities in heterogeneous environments. Data placement
comprises all data movement related activities such as transfer, staging, replication, space
allocation and de-allocation. Stork can queue, schedule, monitor, and manage data
placement jobs and ensure that the jobs complete.

Figure 1: Overall view of workflow management components.

4 Data Management issues
Data-intensive applications in distributed computing systems may require moving the
input data for the job from a remote site to the execution site, executing the job, and then
moving the output data from execution site to the same or another remote site. These data
movement decisions are made in our system by Pegasus. In order to avoid the risk of
running out of disk space at the execution site, Pegasus may also allocate space before
transferring the input data there, and release the space after it moves out the output data
from there. We regard all of these computational and data placement steps as real jobs
and represent them as nodes in a DAG as shown in Figure 2.

Figure 2: Separation of data placement from computation.

Data placement jobs are represented in a different way than computational jobs in the job
specification language, so that the high-level planners can differentiate these two classes
of jobs. Then, the planner submits computational jobs to a compute job queue, and the

data placement jobs to a data placement job queue. Jobs in each queue get scheduled by
the corresponding scheduler.

Since our focus in this work is on the data placement part, we do not get into details of
the computational job scheduling. The data placement scheduler can understand the
characteristics of the data placement jobs and can make smart scheduling decisions
accordingly. Computational job schedulers do not understand the semantics of data
transfers well.

For example, if the transfer of a large file fails, we do not want simply restart the job and
re-transfer the whole file. Rather, we may prefer to transfer only the remaining part of the
file. Similarly, if a transfer using one protocol fails, we may want to try other protocols
supported by the source and destination hosts to perform the transfer. We also may want
the scheduler to choose and apply the network tuning parameters such as I/O block size,
TCP buffer size and number of parallel streams, which best fits to the selected data
transfer protocol. A traditional computational job scheduler does not handle these cases.
For this purpose, we differentiate the data placement jobs from computational jobs.

The data placement component schedules the jobs in its queue according to the
information it gets from the high-level planner and from the resource broker/policy
enforcer (matchmaker). The resource broker matches resources to jobs, and helps in
locating the data and making decisions such as where to move the data. The policy
enforcer helps in applying the resource specific or job specific policies, such as how
many concurrent connections are allowed to a specific storage server.

The transfer history data collected from the job log files and the network statistics from
the network monitoring tools are fed back to the scheduler and the high-level planner.
The job description can be changed according to this feedback as well whenever it is
necessary.

5 Limitations of the current approach
When failures in the environment are infrequent, the workflow can be simply passed
from the planning component to the execution component. However, in the face of
potentially many failures, the simple delegation scenario may not be sufficient. Failure
handling for computational jobs is fairly straightforward if they do not have any data
dependencies. The most common failure handling mechanism for these types of jobs is
simply rescheduling to another computational resource and retrying. If the jobs are
dependent on the existence or the transfer of some data, in other words data placement,
more complicated failure recovery mechanisms need to be employed depending on the
failure reason.

If the reason of failure for the computational job is some missing input data, the earlier
jobs in the workflow which were responsible of creating and transferring the necessary
input data for this particular jobs may need to be re-executed as well. This can involve
either the planner or the workflow manager. The workflow manager can simply do a
rollback in the workflow, and then repeat some of the already successfully completed
jobs to meet the failed job’s requirements. Sometimes, even a rollback may not be
sufficient. The planner may need to be involved and it may need to change the workflow
or reconsider site and replica selection if necessary.

If the job fails due to insufficient disk space, either it should be assigned to another
resource with sufficient disk space, or space reservations should be made to ensure that
adequate disk space remains during a file transfer or during creation of output data by a
computational job.

All of these actions require coordination between the planner, workflow manager and the
corresponding batch schedulers. Such interactions are currently not available in today’s
GriPhyN systems.

6 Interactions between Workflow Planning and
Execution

In this section, we abstract away from the details of the systems we presented so far and
focus on the interactions that are necessary between workflow planning and execution
components. As we already mentioned, in order for the abstract workflow to be executed
on opportunistic distributed resources, such as for example resources provided by a Grid,
a mapping from the abstract workflow specification to actual resources has to be
performed throughout the execution of the workflow. In general, the mapping can be
viewed as an iterative process. The planner devises a plan and delegates it to the manager
for execution. Given the evolution of the execution of the plan, it may be necessary to
adjust the mapping decisions. The level of specification of the plan may vary depending
on the capabilities of the planner and the manager. In general, because of the highly
dynamic aspects of the underlying execution environment, it may be beneficial to
postpone the binding of a task to a physical resource until the very last moment.

6.1 Planning decision points
Not all decisions can be postponed to the end. The manager needs to have a general idea
of the work that needs to be managed. The planner needs to construct a high-level plan
for the entire workflow ahead of time and provide the manager with a general structure of
the workflow. The planner may augment the initial abstract workflow with additional
activities that may be necessary for the actual execution, such as resource allocation and
de-allocation, stage-in and stage-out, and clean up after the job is finished, as shown in
figure 3. The planner may also reduce the workflow by removing activities whose result
is already available. For example, if several jobs requiring the same input file get
assigned to the same execution site, some of the steps for storage allocation and data
transfers can be merged as shown in figure 4. The initial workflow adaptation may also
depend upon the current state of the execution environment. The final decision of
allocation of a particular activity may occur at three distinct points in time.

Workflow Delegation Time: Decisions can be made at the time that the execution of the
workflow is delegated to the manager (eager planning). In eager planning, the planner
makes the decision given the state of the resources at the time just prior to the delegation.

Activity Scheduling Time: Although the manager is provided with the structure of the

workflow at delegation time, the decision of resource assignment is made when a
particular activity or activity set is ready to be released into the system (in particular
when all the parents of the activities are successfully completed). In this mode, that we
term deferred planning, the information used during the mapping reflects the state of the
execution system at the time that an activity can be released to the execution
environment.

Resource Availability Time: It is possible that at the time an activity is ready to execute,
there are no resources available to execute that activity or that it is difficult to determine
the “best” resources at that time. Just-in-time planning allows decisions to be made when
resources needed to execute the activity become available.

Figure 3: Extending the DAG according to the requirements of the job.

Although, in general it may be advantageous to schedule as late as possible, it may
sometimes be also detrimental. For example, if a computation requires a large input data
set, it can be beneficial to pre-stage the data to a particular resource and then execute
there. That approach is better than picking an available computation resource as it
becomes available and then stage the data in.

Also, the entire workflow may not need to be treated uniformly. It is possible that some

planning can and needs to be done ahead of time, for example if the workflow can use
resources that support reservation, or when we are dealing with a reasonably stable
execution environment, for example a Grid that has been dedicated for a particular time,
where resource contention is low. In the case that reservations are not available, but we
are dealing with rare resources, such instruments or environments composed of queuing-
based resources (for example the TeraGrid) it may be advantageous to use the deferred
approach. Just-in-time planning may be beneficial in a highly dynamic environment
where resources can suddenly become available or go away and where resource
contention is high.

Figure 4: Reduction of unnecessary nodes in the DAG.

As one can imagine, a particular workflow can benefit from a variety of scheduling

paradigms, reserving resources ahead of time where possible, submitting jobs into queues
of high-performance resources, hoping that resources become available and taking
advantage of them. The interactions between the planner and manager need to support
that type of flexible resource assignment. Additional complexity arises from the fact that
resources may suddenly disappear. In that case previously made decisions may need to be
revisited. We touch upon some of these issues in the Section 6.3.

6.2 Decision Specification Level
The level of specification that the planner gives to the manager is dependent on the
capabilities of each of these components. On one end of the spectrum, the planner may be
able to structure the workflow but then push all the decision making to the manager. This
requires a manager that is capable of making decisions (good or bad). On the other end
of the spectrum, we can have a manager with no decision-making capabilities where we
need to rely on the planner to make all the decisions. In practice, the capabilities of the
planners and managers may be somewhere in between, enabling a certain level of
sophistication in the decision making process by both components.

Notice that the capabilities of the planner and manager do not necessarily dictate any
particular decision points rather they dictate the level of specification that the planner
gives to the manager. For example, we can imagine a very sophisticated planner. Let us
assume that we plan eagerly. If the planner has at its disposal a simple manager, it will
need to tell that manager exactly what resources to use at each step of the workflow.
However, if the manager is more sophisticated, rather than receiving directives from the
planner, it can receive “guidance” in the form of preferred resources, policies to use when
making resource assignments, etc. The final, deferred, or just-in-time decision can be left
to the manager.

Having a simple manager does not imply that the decision cannot be made in the deferred
mode. The directives coming from the planner can instruct the manager to call back to the
planner at the time when that activity is ready to be released into the execution system.
The just-in-time mode is a bit more complex, because it relies on the capability of the
manager to recognize the opportunities presented by the environment (new resources
suddenly becoming available).

6.3 Reacting to the Changing Environment and Recovering from
Failures

Interactions between the planner and the manager are not solely geared towards
delegating work from the planner to the manager. In a reliable and static environment, the
initial plan (at any level of specificity) can be given for execution by the manager.
However, distributed environments, especially the Grid, are very dynamic and prone to
failure. One cannot rely solely on the manager or the execution environment to handle
failures and to adapt to changing resource loads. Although the manager may try to
recover from failures by methods such as retry, it may ultimately fail to execute the
specified task. It is thus necessary for the workflow manager to communicate the failure,
as well as success to the planner. We term this process as “flow back” denoting the flow
back of the information from the manager to the planner. Based on the information
provided by the manager, the planner can decide how to proceed, whether to reschedule a
particular activity and possibly its dependents.

Again, the level of sophistication of the planner and manager play an important role. It
determines how much recovery is placed within the responsibility of the components. If
the manager is sophisticated, it can possibly try to schedule to a different set of resources
(based on its own knowledge or based on the planner directives). If the manager is not
that sophisticated or has tried all that it could, it may want to communicate the failures
back to the planner. However, if the planner is not very sophisticated, it may not attempt
recovery procedures beyond those used by the manager. In any case, the planner is
ultimately responsible for the end-to-end execution of the workflow and needs to
communicate with higher-level systems (maybe a user).

The planner may be able to come up with a different set of directives, possibly even re-
computing parts of the workflow that were not exposed to the manager. For example, the
planner may have reduced the abstract workflow based on the assumption that particular
data products were available in the environment. If for example, these products are
suddenly not available, either through resource failure or through user interaction
(deleting a file); the planner may augment the workflow and include the generation of the
necessary data. In general, in case of failures, the planner may want to re-plan the
mapping of the workflow.

7 Related work
There have been a number of efforts within the Grid community to develop general-
purpose workflow management solutions.

WebFlow [Fox 98] is a multileveled system for high performance distributed
computing. It consists of three layers. The top layer consists of a web based tool for
visual programming and monitoring. It provides the user the ability to compose new
applications with existing components using a drag and drop capability. The middle layer
consists of distributed web flow server implemented using java extensions to httpd
servers. The lower layer uses the Java CoG Kit to interface with the Grid [Laszewski 01]
for high performance computing. Webflow uses GRAM as the interface between
Webflow and the Globus Toolkit. Thus, Webflow also provides a visual programming aid
for the Globus toolkit.

GridFlow [Cao 03] has a two-tiered architecture with global Grid workflow
management and local Grid sub workflow scheduling. GridAnt [gridant] uses the Ant
[ant] workflow processing engine. Nimrod-G [Buyya 00] is a cost and deadline based
resource management and scheduling system. The Accelerated Strategic Computing
Initiative Grid [Beiriger 00] distributed resource manager includes a desktop submission
tool, a workflow manager and a resource broker. In the ASCI Grid software components
are registered so that the user can ask "run code X" and the system finds out an
appropriate resource to run the code. Pegasus uses a similar concept of virtual data where
the user can ask "get Y" where Y is a data product and the system figures out how to
compute Y. Almost all the systems mentioned above except GridFlow use the Globus
Toolkit [Foster 99] for resource discovery and job submission. The GridFlow project will
apply the OGSA [ogsa] standards and protocols when their system becomes more mature.
Both ASCI Grid and Nimrod-G uses the Globus MDS [Fitzgerald 97] service for
resource discovery and a similar interface is being developed for Pegasus. GridAnt,
Nimrod-G and Pegasus use GRAM [Czajkowski 98] for remote job submission and GSI
[Welch 03] for authentication purposes. GridAnt has predefined tasks for authentication,
file transfer and job execution, while reusing the XML-based workflow specification
implicitly included in ant, which also makes it possible to describe parallel and sequential
executions.

The main difference between Pegasus and the above systems is that while most of
the above system focus on resource brokerage and scheduling strategies Pegasus uses the
concept of virtual data and provenance to generate and reduce the workflow based on
data products, which have already been computed earlier. It prunes the workflow based

on the assumption that it is always more costly the compute the data product than to fetch
it from an existing location. Pegasus also automates the job of replica selection so that the
user does not have to specify the location of the input data files. Pegasus can also map
and schedule only portions of the workflow at a time, using just in-time planning
techniques.

BAD-FS [Bent 04] builds a batch aware distributed filesystem for data intensive
workloads. This is general purpose and serves workloads more data intensive than
conventional ones. For performance reasons it prefer to access source data from local
disk rather than over a network filesystem. Further, BAD-FS at present does not schedule
wide-area data movement which we feel is necessary for large data sets. BAD-FS can
interact with our system for more reliable and efficient wide area transfers.

Pasquale et al [Pasquale 94] present a framework for operating systems level I/O
pipelines for efficiently transferring very large volumes of data between multiple
processes and I/O devices. This work is at very low level and does not apply to
distributed systems.

Application Level Schedulers (AppLeS) [Berman 96] have been developed to
achieve efficient scheduling by taking into account both application-specific and dynamic
system information. AppLeS agents use dynamic system information provided by the
NWS [Wolski 97].

Beck et. al. introduce Logistical Networking [Beck 00] which performs global
scheduling and optimization of data movement, storage and computation based on a
model that takes into account all the network's underlying physical resources. This
approach only focuses only on the data movement and does not perform any coordination
of CPU and data.

Thain et. al. propose the Ethernet approach [Thain 03] to distributed computing, in
which they introduce a simple scripting language which can handle failures in a manner
similar to exceptions in some languages. The Ethernet approach is not aware of the
semantics of the jobs it is running; its duty is retrying any given job for a number of times
in a fault tolerant manner

8 Conclusions
In summary, the process of mapping workflows in distributed, opportunistic
environments requires a dynamic multi-stage approach. There is a need to have a
mapping component that can make decisions on the global scale—the scale of the entire
workflow and a component that can react and adapt to the changing environment. These

components cannot be independent of one another, rather they need to be closely
coordinated. In this paper we use our recent experience in managing real-life workflows
on Grid resources [Griphyn] to identify challenges and discuss possible approaches to
address them. The ideas presented in this paper will be used by the authors and their
teams to enhance the functionality of their respective software tools.

References:
[ATLAS] CERN, “A Toroidal LHC ApparatuS Project”, http://atlas.web.cern.ch/Atlas.
[Beck 00] M. Beck, T. Moore, J. Plank and M. Swany, “Logistical Networking”, Active

Middleware Services, S. Hariri, C. Lee and C. Raghavendra, editors, Kluwer
Academic Publishers, 2000.

[Bent 04] J. Bent, D. Thain, A. Arpaci-Dusseau and R. Arpaci-Dusseau, “Explicit
Control in a Batch-Aware Distributed File System”, In the Proceedings of the First
USENIX/ACM Conference on Networked Systems Design and Implementation (NSDI
2004), March, 2004.

[Beiriger 00] Beiriger, J., Johnson, W., Bivens, H., Humphreys, S. and Rhea, R.,
Constructing the ASCI Grid. In Proc. 9th IEEE Symposium on High Performance
Distributed Computing, 2000, pp. 193-200. IEEE Press.

[Berman 96] F. Berman, R. Wolski, S. Figueira, J. Schopf and G. Shao, “Application
Level Scheduling on Distributed Heterogeneous Networks”, In Proceedings of
Supercomputing'96, Pittsburgh, PA, November 1996.

[Buyya 00] Buyya, R., Abramson, D. and Giddy, J. "Nimrod/G: An Architecture of a
Resource Management and Scheduling System in a Global Computational Grid",
HPC Asia 2000, May 14-17, 2000, pp 283 - 289, Beijing, China.

[Cao 03] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. GridFlow: WorkFlow
Management for Grid Computing. In Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID'03), pp.
198-205, 2003.

[Czajkowski 98] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W.
Smith, S. Tuecke. A Resource Management Architecture for Metacomputing
Systems. Proc. IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel
Processing, pg. 62-82, 1998.

[CMS] CERN, “The Compact Muon Solenoid Project”, http://cmsinfo.cern.ch.
[DAGMan] Condor Team. “The directed acyclic graph manager (DAGMan)”,

http://www.cs.wisc.edu/condor/dagman, 2002
[Deelman 03] E. Deelman, J. Blythe, et al., "Mapping Abstract Complex Workflows onto

Grid Environments," Journal of Grid Computing, vol 1, nr 1, pages 25-29, 2003.
[Deelman 03b] E. Deelman, J. Blythe, Y. Gil, Carl Kesselman "Workflow Management

in GriPhyN", Chapter in "The Grid Resource Management", 2003.
[Deelman 04] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. Su, K.

Vahi, “Pegasus: Mapping Scientific Workflows onto the Grid”, To appear in the
Proceedings of across Grid EU Conference, 2004.

[DPOSS] S. G. Djorgovski, R. R. Gal, S. C. Odewahn, R. R. de Carvalho, R. Brunner, G.
Longo and R. Scaramella, “The Palomar Digital Sky Survey (DPOSS)”, Wide Field
Surveys in Cosmology, 1988.

[Fitzgerald 97] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S.
Tuecke. A Directory Service for Configuring High-Performance Distributed
Computations. Proc. 6th IEEE Symposium on High-Performance Distributed
Computing, pp. 365-375, 1997.

[Foster 99] I. Foster and C. Kesselmann, “Globus: A Toolkit-Based Grid Architecture”,
The Grid: Blueprints for a new Computing Infrastructure, pages 259-278, Morgan
Kaufmann, 1999.

[Fox 98] http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Akarsu809
[Frey 01] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, "Condor-G:

AComputation Management Agent for Multi-Institutional Grids.," Cluster
Computing, vol. 5, pp. 237-246, 2002.

[gridant] http://www-unix.globus.org/cog/projects/gridant
[Griphyn] Griphyn, “Grid Physics Network”, http://www.griphyn.org
[Henderson 96] R. Henderson and D. Tweten, “Portable Batch System: External

Reference Specification”, 1996.
[IBM 96] IBM, “Using and Administering IBM Load Leveler”, IBM Corporation SC23-

3989, 1996.
[Kosar 04] T. Kosar and Miron Livny, “Stork: Making Data Placement a First Class

Citizen in the Grid”, In the Proceedings of 24th IEEE International Conference on
Distributed Computing Systems (ICDCS 2004), Tokyo, Japan, March 2004.

[Laszewski 01] von Laszewski, G. I. Foster, J. Gawor, P. Lane, “A Java Commodity Grid
Kit,” Concurrency and Computation: Practice and Experience, pages 643-662,
Volume 13, Issue 8-9, 2001.

[LIGO] Caltech, “Laser Interferometer Gravitational Wave Observatory”,
http://www.ligo.caltech.edu.

[Litzkow 88] M. J. Litzkow, M. Livny and M. W. Mutka, “Condor – A Hunter of Idle
Workstations”, In Proceedings of the 8th Int. Conf. of Distributed Computing Systems,

pages 104-111, 1988.
[ogsa] www.globus.org/ogsa
[Pasquale 94] J. Pasquale and E. Anderson, “Container Shipping: Operating System

support for {I/O} Intensive Applications”, IEEE Computer, 1994.
[SDSS] FNAL, “Sloan Digital Sky Survey”, http://tdpc01.fnal.gov/sdss/project.htm.
[Thain 03] D. Thain and M. Livny, “The Ethernet Approach to Grid Computing”, In

Proceedings of the Twelfth IEEE Symposium on High Performance Distributed
Computing (HPDC-12), Seattle, WA, June 2003.

[Welch 03] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Cajkowski, J. Gawor, C.
Kesselman, S. Meder, L. Pearlman, S. Tuecke. Security for Grid Services. Twelfth
International Symposium on High Performance Distributed Computing (HPDC-12),
pp. 48 -57, June 2003, IEEE Press.

[Wolski 97] R. Wolski, “Dynamically Forecasting Network Performance to Support
Dynamic Scheduling Using the Network Weather Service”, In Proceedings of the
Sixth IEEE Symposium on High Performance Distributed Computing (HPDC6),
Portland, OR, August 1997.

[Zhou 92] S. Zhou, “LSF: Load Sharing in Large-Scale Heterogeneous Distributed
Systems”, In Proceedings of Workshop on Cluster Computing, 1992.

